

BSPump

Introduction

BitSwan is a product designed to real-time data processing. By means of so-called real-time processors BitSwan is able to analyze hundreds of data streams
from a lot of various sources at the same time, which makes it suitable to detect anomalies and data patterns as well as other situations when instantaneous
action is needed. BitSwan is based on Python language.

How to install BitSwan

Use command in your command prompt

pip install bspump

or you can clone the github repository BitsSwanPump [https://github.com/LibertyAces/BitSwanPump]

pip install git+https://github.com/LibertyAces/BitSwanPump.git

	How it works
	Pipeline

	Source

	Processor

	Bitswan Tutorials
	Bitswan Tutorials

	Coindesk API Example

	Weather API Example

	Configuration Quickstart

	How to connect to Elastic Search

	Escape From Tarkov Craft Profit Counter

	Fortnite Current Store Example

	Install ElasticSearch and Kibana via Docker

	Install Kafka and KafDrop via Docker

	Docker File Quickstart

	WebSocket Example

	Blank App

	Reference Documentation
	Basics

	Source Construction

	Processor

	Top Level Objects

	Common

	Advanced

	Technologies

How it works

heeelp

Pipeline

Pipeline is responsible for data processing in BSPump.
Individual Pipeline objects work asynchronously and independently of one another (provided dependence is not defined explicitly – for instance on a message source from some other pipeline).
Each Pipeline is usually in charge of one concrete task.

Pipeline has three main components:

	Source

	Processor

	Sink

[image: Pipeline diagram]
Source connects different data sources with the Pipeline to be processed

Multiple sources

A Pipeline can have multiple sources.
They are simply passed as a list of sources to a Pipeline build() method.

class MyPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 [
 MySource1(app, self),
 MySource2(app, self),
 MySource3(app, self),
]
 bspump.common.NullSink(app, self),
)
:meta private:

The main component of the BSPump architecture is a so-called Processor.
This object modifies, transforms and enriches events.
Moreover, it is capable of calculating metrics and creating aggregations, detecting anomalies or react to known as well as unknown system behaviour patterns.

Processors differ as to their functions and all of them are aligned according to a predefined sequence in pipeline objects.
As regards working with data events, each Pipeline has its unique task.

Processors are passed as a list of Processors to a Pipeline build() method

class MyPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 [
 MyProcessor1(app, self),
 MyProcessor2(app, self),
 MyProcessor3(app, self),
]
 bspump.common.NullSink(app, self),
)
:meta private:

Sink object serves as a final event destination within the pipeline given.
Subsequently, the event is dispatched/written into the system by the BSPump

Source

Source is an object designed to obtain data from a predefined input.
The BSPump contains a lot of universally usable, specific source objects, which are capable of loading data from known data interfaces.
The BitSwan product further expands these objects by adding source objects directly usable for specific cases of use in industry field given.

Each source represent a coroutine/Future/Task that is running in the context of the main loop.
The coroutine method main() contains an implementation of each particular source.

Source MUST await a Pipeline ready state prior producing the event.
It is acomplished by await self.Pipeline.ready() call.

Trigger Source

This is an abstract source class intended as a base for implementation of ‘cyclic’ sources such as file readers, SQL extractors etc.
You need to provide a trigger class and implement cycle() method.

Trigger source will stop execution, when a Pipeline is cancelled (raises concurrent.futures.CancelledError).
This typically happens when a program wants to quit in reaction to a on the signal.

You also may overload the main() method to provide additional parameters for a cycle() method.

async def main(self):
 async with aiohttp.ClientSession(loop=self.Loop) as session:
 await super().main(session)

async def cycle(self, session):
 session.get(...)

Processor

The main component of the BSPump architecture is a so called processor.
This object modifies, transforms and enriches events.
Moreover, it is capable of calculating metrics and creating aggregations, detecting anomalies or react to known as well as unknown system behavior patterns.

Processors differ as to their functions and all of them are aligned according to a predefined sequence in pipeline objects.
As regards working with data events, each pipeline has its own unique task.

Bitswan Tutorials

	Bitswan Tutorials
	Prerequisites

	Installing python

	Installing BSPump module

	BSPump Highlevel architecture

	BSpump Service

	Connection

	Pipeline

	Lookup

	Source

	Processor

	Sink

	Coindesk API Example
	About

	Source and Sink

	Your First Processor

	Creating Custom Processor

	Next steps

	Weather API Example
	About

	Pipeline

	Multiple locations source

	Connect to ES

	Configuration Quickstart
	What is configuration?

	Example

	Running your pump with configuration files

	How to connect to Elastic Search
	Elastic Search Source

	Elastic Search Sink

	Escape From Tarkov Craft Profit Counter
	About

	Source

	Filter Processor

	Dataframe to csv Processor

	What next

	Fortnite Current Store Example
	About

	First sample pipeline

	Export to CSV

	Processor with pandas script

	Conclusion

	What next?

	Install ElasticSearch and Kibana via Docker
	About

	Docker compose with ES and Kibana

	Run Weather pump to pump data to Elastic Search index

	Summarize

	What next

	Install Kafka and KafDrop via Docker
	About

	Docker compose with Kafka and KafDrop

	Pump data to Kafka topic

	Summarize

	What next

	Docker File Quickstart
	About

	quickstart to docker

	docker file

	Creating docker image

	additional commands

	what next

	WebSocket Example
	what is socket

	explain server/client consumer/producer

	Server consumer

	Client producer

	what next

	Blank App
	pipeline

	processor

	service

	module

	app

	init

	how to start the pipeline

Bitswan Tutorials

in this series of tutorials we will walk you through basic and more advanced examples and demos
to initiate your adventure with BSPump.

You will learn more about the BSPump architecture and how each component works. However, before you can
start on your journey you should know basics of python and be able to set up your programming environment.

Prerequisites

Here are some quick tutorials that will help you installing python and BSPump module using package installer for Python called pip.

Installing python

Firstly you should check whether you don’t already have python installed. Open your command line or terminal and type:

C:/> python --version
> Python 3.8.4

if your python version is lower than 3.8 check Python.org [https://www.python.org/]

If you are a complete beginner to python or you want more information
about python check out the Python tutorial [https://docs.python.org/3/tutorial/index.html]

Installing BSPump module

To install BSPump module:

pip install asab bspump

or alternatively using

pip install git+https://github.com/LibertyAces/BitSwanPump-BlankApp.git

If you dont have installed pip type:

python get-pip.py

To check the version use.

pip --version

Have you managed to install everything? Then you are ready for creating your first BSPump.

BSPump Highlevel architecture

BSPump is made from several components which are going to be explained in this tutorial. As you probably know, Bitswan is a real-time stream processor.
To be able to process and work with large amount of data, BSpump uses so-called Event Stream Processing, data is propagated through a data pipeline in Events.
Event is a single data point with a timestamp. To handle these events Pipeline has special components that be compatible with each other.
.Therefore, each pipeline is made from several vital compoents: source, processor and sink. However, for the pipeline to work Bitswan uses BSPump Service
to handle and register connetions, pipelines etc.

[image: alternate text]
Firstly, we will walk you through each of components and its functionality, so you can later build your own pipeline. Doesn’t that sounds cool?

BSpump Service

Service is part where pipelines and connections are registered.

We will go through the following code and explain each part

import asab

from .pipeline import TCPPipeline

class BlankService(asab.Service):

 def __init__(self, app, service_name="blank.BlankService"):
 super().__init__(app, service_name)

 async def initialize(self, app):
 svc = app.get_service("bspump.PumpService")

 # Create and register all connections here

 # Create and register all matrices here

 # Create and register all lookups here

 # Create and register all pipelines here

 self.TCPPipeline = TCPPipeline(app, "TCPPipeline")
 svc.add_pipeline(self.TCPPipeline)

 await svc.initialize(app)

 async def get_data(self, message="be"):
 await self.TCPPipeline.process(message)
 return "Check stdout"

In this example we

Connection

To be able to connect to a data source you have to make a connection. connection is usually done in Source class and then registered in service class.

Pipeline

pipeline

import sys

import bspump
import bspump.common
import bspump.socket

from .processor import ShakespeareanEnricher

class TCPPipeline(bspump.Pipeline):
 """
 To test this pipeline, use:
 socat STDIO TCP:127.0.0.1:8888
 or visit http://localhost:8080/blank?message=die
 """

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.socket.TCPSource(app, self, config={"host": "0.0.0.0", "port": 8888}),
 ShakespeareanEnricher(app, self),
 bspump.common.PPrintSink(app, self, stream=sys.stderr)
)

Lookup

Source

Description about source. What is it ..

Streaming Source

Streaming Source enables events to enter in so-called stream. Events flow through source in real time manner as they are being delivered by the input technology.

Following technologies can be used as a streaming source

	Kafka

	Elastic Search

	RabbitMQ

Elastic Search Source

TODO

Description

Example

Explanation

Kafka Source

TODO

Description

Example

Explanation

Trigger Source

Unlike streaming source, Trigger Source is used when we need to pump data from SQL-like databases or files.
They have to be triggered by an external event or a repeating timer (requesting JSON data from APIs every 10 minutes).

Trigger Source can be used for:

	HTTP client/server

	SQL query

	TCP

	Files: csv, json etc.

TCP source

Description

TCP Source can be to obtain data from peer to peer connection using TCP.

Use case

TODO

Example

class EchoPipeline(bspump.Pipeline):

 '''
 To test this pipeline, use:
 socat STDIO TCP:127.0.0.1:8083
 '''

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 bspump.ipc.StreamServerSource(app, self, config={'address': '0.0.0.0 8083'}),
)

HTTP Client Source

Description

HTTP Client Source gets data from a specified API URL.

Use case

if you need pump data from a single API URL you can use this Source.

Example

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.http.HTTPClientSource(app, self, config={
 'url': '<<API URL>>'
 }).on(<<Here you will use some type of trigger>>),
)

The API URL can be any API you wish to get data from.

You will need to specify your Trigger type. You can choose your Trigger here : TODO <<reference>>

Note

Full functional example with this source can be found here coindesk

MySQL

Description

Example

Explanation

JSON File

Description

Example

Explanation

CSV File

Description

Example

Explanation

Processor

Processor

import bspump

class ShakespeareanEnricher(bspump.Processor):

 def process(self, context, event):
 if isinstance(event, bytes):
 event = event.decode("utf-8").replace('\r', '').replace('\n', '')
 return 'To {0}, or not to {0}?'.format(event)

Sink

Sink is the part responsible for the output of the data to a database, standard output in your computer on into another pipeline.

PPrintSink

In this example we are going to use PPrintSink
which prints the data from pipeline to stdout or any other stream that is connected to the pipeline.

To use sink in your pipeline

self.build(
 bspump.common.PPrintSink(app, self, stream=sys.stderr)
)

PPrintSink class is added to your pipeline. It should be the last part of the pipeline for the pipeline to work correctly.

to further explain the , bspump.common. is the part where you specify the path to the class PPrintSink is the name of the class.
In the parentheses you can specify the output stream. If none is specified stdout is used.

code

class PPrintSink(Sink):
 """
 Description:

 |

 """

 def __init__(self, app, pipeline, id=None, config=None, stream=None):
 """
 Description:

 |

 """
 super().__init__(app, pipeline, id, config)
 self.Stream = stream if stream is not None else sys.stdout

The whole code can be found at BitSwan BlankApp [https://github.com/LibertyAces/BitSwanPump-BlankApp]

Coindesk API Example

About

In this example we will learn how to extract any data from API. We will be using a HTTP Client Source for the API request.

In this example we will be using API from Coindesk [https://www.coindesk.com/] to get the current price of Bitcoin.

The final pipeline will simply get data from the API request as a JSON, covert it to python dictionary, and output the
data to Command Prompt. Additionally, I will show you how to create your own Processor to enrich
the data.

The following code can be found
here [https://github.com/LibertyAces/BitSwanPump/blob/feature/restructured-text/examples/bspump-http.py] in our GitHub repo.

A diagram of the final pipeline.

[image: Coindesk pipeline pic]

Source and Sink

In the code below, you can see the basic structure of a pipeline. The important part is the self.build() method, where its
parameters are the single components of the pipeline. In this part we will use two main components each pipeline must contain:
Source and Sink. Do not copy this part of code yet, because it is not example on its own

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 #Source of the pipeline
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 #Sink of the pipeline
 bspump.common.PPrintSink(app, self),
)

Source is a component that supplies the pipeline with data. In our example we will use a specific type of Source. Because we need
to Pump data from API, we need to send a request to the API to receive our data. This means that our Source has to regularly
and send the request using API. For this reason we will be using so-called Trigger Source. More about Trigger Source .

HTTP Client Source can have many configurations, but in our example we just need to specify our URL address, using
config={'url': '<OUR URL>'} as parameter in HTTP Client Source.

Because we are using Trigger Source, we need to specify which Trigger we will be using. There are many types of
Triggers, but in our example we will be using PeriodicTrigger, which triggers in time intervals specified in the
parameter. bspump.trigger.PeriodicTrigger(app, <<Time parameter in seconds>>))

Each pipeline has to have Sink. In our example we want to see the result of the data, so we will be using PPrintSink,
which simply prints the data to the Command Prompt.

You can try to copy paste this chunk of code and try it yourself. Make use you have BSPump module installed for your Python, if not you
can follow our guide Installing BSPump module .

#!/usr/bin/env python3
import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 bspump.common.PPrintSink(app, self),
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()
 svc = app.get_service("bspump.PumpService")
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)
 app.run()

The program should output a JSON similar to this

(b'{"time":{"updated":"Jan 31, 2022 15:47:00 UTC","updatedISO":"2022-01-31T15:4'
 b'7:00+00:00","updateduk":"Jan 31, 2022 at 15:47 GMT"},"disclaimer":"This data'
 b' was produced from the CoinDesk Bitcoin Price Index (USD). Non-USD currency '
 b'data converted using hourly conversion rate from openexchangerates.org","cha'
 b'rtName":"Bitcoin","bpi":{"USD":{"code":"USD","symbol":"$","rate":"37,789'
 b'.6250","description":"United States Dollar","rate_float":37789.625},"GBP":{"'
 b'code":"GBP","symbol":"£","rate":"28,145.2970","description":"British P'
 b'ound Sterling","rate_float":28145.297},"EUR":{"code":"EUR","symbol":"€"'
 b',"rate":"33,772.9280","description":"Euro","rate_float":33772.928}}}')

As you can see this is not ideal format to read our data from. We will need to convert our incoming data.

Your First Processor

After we have a functional pipeline, we can start with the more interesting part, Processors. The Processor is the
component which works with data of an event. In this example we will use a simple Processor, StdJsonToDictParser, which only converts the
incoming JSON to python Dict type, that is much easier to work with in python.

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 bspump.common.StdJsonToDictParser(app, self),
 bspump.common.PPrintSink(app, self),
)

this Processor is added simply by adding it to self.build() between Source and Sink.

You should be getting more organized output

{'bpi': {'EUR': {'code': 'EUR',
 'description': 'Euro',
 'rate': '33,794.5989',
 'rate_float': 33794.5989,
 'symbol': '€'},
 'GBP': {'code': 'GBP',
 'description': 'British Pound Sterling',
 'rate': '28,163.3569',
 'rate_float': 28163.3569,
 'symbol': '£'},
 'USD': {'code': 'USD',
 'description': 'United States Dollar',
 'rate': '37,813.8733',
 'rate_float': 37813.8733,
 'symbol': '$'}},
 'chartName': 'Bitcoin',
 'disclaimer': 'This data was produced from the CoinDesk Bitcoin Price Index '
 '(USD). Non-USD currency data converted using hourly conversion '
 'rate from openexchangerates.org',
 'time': {'updated': 'Jan 31, 2022 15:49:00 UTC',
 'updatedISO': '2022-01-31T15:49:00+00:00',
 'updateduk': 'Jan 31, 2022 at 15:49 GMT'}}

Creating Custom Processor

Because a most of your use cases will be unique, it is most likely that there will be no existing Processor that could do
the work. Consequently, you will have to implement your own Processor.

Creating new Processor is not a complicated task. You will need to follow the basic structure of an general Processor.
You can simply copy-paste the code below:

class EnrichProcessor(bspump.Processor):
 def __init__(self, app, pipeline, id=None, config=None):
 super().__init__(app, pipeline, id=None, config=None)

 def process(self, context, event):

 return event

This a sample processor class. The most important part of this processor class is the process method. This method will
be called when an event is passed to the Processor. As you can see, the default implementation of process method
returns the event return event. Event must be passed to the following component, another Processor or Sink.

If you wish to use your new Processor in our case EnrichProcessor You will need to reference it in self.build method.
You can do that simply by adding it to self.build parameters.

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 bspump.common.StdJsonToDictParser(app, self),
 EnrichProcessor(app, self),
 bspump.common.PPrintSink(app, self),
)

The last step is implementation. For our example, I created a simple script that takes the incoming event (python
dictionary that contains price of Bitcoin in USD, Euro, and Pounds) and adds a new branch with a Japanese yen. The
EnrichProcessor class has a new method convertUSDtoJPY which calculates the price of yen based on USD conversion rate
(Note: The exchange rate is outdated for sake of simplicity of this example).

class EnrichProcessor(bspump.Processor):
 def __init__(self, app, pipeline, id=None, config=None):
 super().__init__(app, pipeline, id=None, config=None)

 def convertUSDtoJPY(self, usd):
 return usd * 113.70 #outdated rate usd/jpy

 def process(self, context, event):
 jpyPrice = str(self.convertUSDtoJPY(event["bpi"]["USD"]["rate_float"]))

 event["bpi"]["JPY"] = {
 "code": "JPY",
 "symbol": "¥",
 "rate": ''.join((jpyPrice[:3], ',', jpyPrice[3:])),
 "description": "JPY",
 "rate_float": jpyPrice
 }

 return event

When we add all parts together we get this functional code.

Your ouput should look something like this:

{'bpi': {'EUR': {'code': 'EUR',
 'description': 'Euro',
 'rate': '33,796.7930',
 'rate_float': 33796.793,
 'symbol': '€'},
 'GBP': {'code': 'GBP',
 'description': 'British Pound Sterling',
 'rate': '28,165.1854',
 'rate_float': 28165.1854,
 'symbol': '£'},
 'JPY': {'code': 'JPY',
 'description': 'JPY',
 'rate': '429,9716.52771',
 'rate_float': '4299716.52771',
 'symbol': '¥'},
 'USD': {'code': 'USD',
 'description': 'United States Dollar',
 'rate': '37,816.3283',
 'rate_float': 37816.3283,
 'symbol': '$'}},
 'chartName': 'Bitcoin',
 'disclaimer': 'This data was produced from the CoinDesk Bitcoin Price Index '
 '(USD). Non-USD currency data converted using hourly conversion '
 'rate from openexchangerates.org',
 'time': {'updated': 'Jan 31, 2022 15:53:00 UTC',
 'updatedISO': '2022-01-31T15:53:00+00:00',
 'updateduk': 'Jan 31, 2022 at 15:53 GMT'}}

To Summarize what we did in this example:

	we created a sample pipeline with a Source and Sink

	we added a new Processor that converts incoming events to python dictionary

	we created a custom Processor that adds a information about Japanese currency to the incoming event and passes it to Sink .

Next steps

You can change and modify the pipeline in any manner you want. For example, instead of using PPrintSink you can use our
Elasticsearch Sink which loads the data to Elasticsearch. Read more about How to connect to Elastic Search .

Weather API Example

About

In this example we will learn how get data from one or multiple HTTP sources using an API request. In this case we cannot use basic
HTTPClientSource, because it returns data only from one API query, so to get data from different queries we will have
to define a new source for this use case.

The final pipeline will get data from multiple API requests in one time as a JSON, convert it to python
dictionary, and output the data to Command Prompt.

In this example we will be using API from Open Weather [https://openweathermap.org/] to get current weather data (e.g, temperature,
feels like temperature, biometric pressure etc).

In this example we will use .conf file to store configuration for our pump. More about how to write configuration is
here Configuration Quickstart.

A diagram of the finished pipeline

[image: Weather Pipeline Pic]

Pipeline

In the code below you can see the structure of SamplePipeline which we need for this use case. The important part is the
self.build() method where its parameters are the single components of the pipeline. Do not forget that every pipeline
requires both source and sink to function correctly.

Source is a component that supply the pipeline with data. In our example we will use a specific type of source. Because we need
to Pump data from API, we need to send request to the API to receive our data. This means that our source has to be
“trigger” the request and send it to the API. For this reason we will be using a so-called trigger source. More about Trigger Source.

Because we are using Trigger Source. We need to specify which trigger we will be using. There are more types of triggers,
but in our example we will be using PeriodicTrigger, which triggers in time intervals specified in the parameter.
bspump.trigger.PeriodicTrigger(app, <<Time parameter in seconds>>))

Each pipeline requires a sink. In our example we want to see the result of the data, so we will be using PPrintSink
which simply prints the data to the Command Prompt.

You can try to copy-paste this chunk of code and try it yourself. You must have BSPump module installed. Follow our guide Installing BSPump module.

Simply rewrite <<LOCATION>> to city you want to obtain data from and put your API key which you will get after you
register on https://openweathermap.org/ to <<YOUR PRIVATE API KEY>> section.
You can find more about how to modify your URL here `https://openweathermap.org/current`_

#!/usr/bin/env python3

import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.openweathermap.org/data/2.5/weather?q=<<LOCATION>>&units=metric&appid=<<YOUR PRIVATE API KEY>>'
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 bspump.common.PPrintSink(app, self),
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()
 svc = app.get_service("bspump.PumpService")
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)
 app.run()

You should get output like this:

~python3 example.py
BitSwan BSPump version 21.11-17-g6b346fd
27-Jan-2022 18:43:00.177421 NOTICE asab.application is ready.
1 pipeline(s) ready.
(b'{"coord":{"lon":-0.1257,"lat":51.5085},"weather":[{"id":802,"main":"Clouds",'
b'"description":"scattered clouds","icon":"03n"}],"base":"stations","main":{"t'
b'emp":8.91,"feels_like":6.86,"temp_min":6.8,"temp_max":10.14,"pressure":1030,'
b'"humidity":71},"visibility":10000,"wind":{"speed":3.6,"deg":290},"clouds":{"'
b'all":35},"dt":1643304840,"sys":{"type":2,"id":2019646,"country":"GB","sunris'
b'e":1643269577,"sunset":1643301595},"timezone":0,"id":2643743,"name":"London"'
b',"cod":200}')

Multiple locations source

In the code above, the pump simply returns data from one location. But in our use case we need to get data from multiple
locations, which means we need to get data from multiple API’s URL. Next, we define our specific trigger source.

We use ClientSession from aiohttp library to create session where get data from GET method as response for every city in our list. Then we
store the data from response to event variable and process the event to pipeline. More about aiohttp session can be found here [https://docs.aiohttp.org/en/stable/client_quickstart.html]

class LoadSource(bspump.TriggerSource):

 def __init__(self, app, pipeline, choice=None, id=None, config=None):
 super().__init__(app, pipeline, id=id, config=config)
 self.cities = ['London','New York','Berlin'] #List of cities

 async def cycle(self):
 async with aiohttp.ClientSession() as session:
 #goes through the list of cities and requests from API for each city
 for city in self.cities:
 async with session.get(url=self.Config['url'].format(city=city, api_key=self.Config['api_key'])) as response:
 event = await response.content.read()
 await self.process(event)

You can see that in this example we are using self.Config method to get the API key and the url from the configuration file. It is
good to have the API key and the url in configuration file, because changes can be made simply in the configuration file.

For example, create a weather-pump.conf file, and into that file you can copy/paste code below

[pipeline:SamplePipeline:LoadSource]
url = https://api.openweathermap.org/data/2.5/weather?q={city}&units=metric&appid={api_key}
api_key = <<YOUR PRIVATE API KEY>>

When you run your pump with configuration file you have to run it with -c switch. So after you finish your pump and
you need to test it, type python3 your-pump-name.py -c weather-pump.conf to the terminal.

You can change the list of cities to any locations you wish. The important part of this source is async def cycle(self)
method where we request the API’s url for every location from our list and process them in the pipeline.

Just be sure that you import aiohttp package and change HTTPClientSource with our new specified LoadSource.

You can copy-paste the final code here:

#!/usr/bin/env python3

import bspump
import bspump.common
import bspump.http
import bspump.trigger
import aiohttp

class LoadSource(bspump.TriggerSource):

 def __init__(self, app, pipeline, choice=None, id=None, config=None):
 super().__init__(app, pipeline, id=id, config=config)
 self.cities = ['London','New York','Berlin'] #List of cities

 async def cycle(self):
 async with aiohttp.ClientSession() as session:
 #goes through the list of cities and requests from API for each city
 for city in self.cities:
 async with session.get(url=self.Config['url'].format(city=city, api_key=self.Config['api_key'])) as response:
 event = await response.content.read()
 await self.process(event)

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 LoadSource(app, self).on(
 bspump.trigger.PeriodicTrigger(app, 5)
),
 bspump.common.PPrintSink(app, self),
)
if __name__ == '__main__':
 app = bspump.BSPumpApplication()
 svc = app.get_service("bspump.PumpService")
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)
 app.run()

After you execute this code you should get this output in terminal:

~ python3 example.py -c example.conf
 BitSwan BSPump version 21.11-17-g6b346fd
 27-Jan-2022 18:56:14.058308 NOTICE asab.application is ready.
 1 pipeline(s) ready.
 (b'{"coord":{"lon":-0.1257,"lat":51.5085},"weather":[{"id":802,"main":"Clouds",'
 b'"description":"scattered clouds","icon":"03n"}],"base":"stations","main":{"t'
 b'emp":8.79,"feels_like":6.72,"temp_min":6.8,"temp_max":10.14,"pressure":1030,'
 b'"humidity":70},"visibility":10000,"wind":{"speed":3.6,"deg":290},"clouds":{"'
 b'all":35},"dt":1643305383,"sys":{"type":2,"id":2019646,"country":"GB","sunris'
 b'e":1643269577,"sunset":1643301595},"timezone":0,"id":2643743,"name":"London"'
 b',"cod":200}')
 (b'{"coord":{"lon":-74.006,"lat":40.7143},"weather":[{"id":801,"main":"Clouds",'
 b'"description":"few clouds","icon":"02d"}],"base":"stations","main":{"temp":-'
 b'1.13,"feels_like":-1.13,"temp_min":-3.36,"temp_max":0.9,"pressure":1030,"hum'
 b'idity":51},"visibility":10000,"wind":{"speed":0.45,"deg":34,"gust":1.34},"cl'
 b'ouds":{"all":19},"dt":1643305980,"sys":{"type":2,"id":2039034,"country":"US"'
 b',"sunrise":1643285428,"sunset":1643321212},"timezone":-18000,"id":5128581,"n'
 b'ame":"New York","cod":200}')
 (b'{"coord":{"lon":13.4105,"lat":52.5244},"weather":[{"id":803,"main":"Clouds",'
 b'"description":"broken clouds","icon":"04n"}],"base":"stations","main":{"temp'
 b'":6.01,"feels_like":1.09,"temp_min":5.01,"temp_max":6.85,"pressure":1003,"hu'
 b'midity":91},"visibility":10000,"wind":{"speed":9.39,"deg":251,"gust":15.2},"'
 b'clouds":{"all":75},"dt":1643305512,"sys":{"type":2,"id":2011538,"country":"D'
 b'E","sunrise":1643266558,"sunset":1643298116},"timezone":3600,"id":2950159,"n'
 b'ame":"Berlin","cod":200}')

Connect to ES

You can change and modify the pipeline in any manner you want. For example, instead of using PPrintSink you can use our
Elasticsearch Sink which loads the data to Elasticsearch. If you want to read more about How to connect to Elastic Search.

Configuration Quickstart

In this tutorial you will learn about configuration in BSPump and how to use it.

What is configuration?

Every BitSwan object inside BSPump application can be configured using user-defined configuration options.
It’s good practice to write configuration in .conf files, because making changes will be much easier.

Every object has default configuration values set in ConfigDefaults. If you set ConfigDefaults in your specific
class you override same values in ConfigDefaults, which are inherited from the parent class.

Configuration .conf files in are built-in in ASAB, the platform on which BSPump is built. You can find more
about it in ASAB documentation [https://asab.readthedocs.io/en/latest/asab/config.html]

There are 3 methods to configure object

1. By defining ConfigDefaults dictionary inside specific class

class MySQLSource(TriggerSource):

 ConfigDefaults = {
 'query': 'SELECT id, name, surname FROM people;'
 }

2.Using config parameter in the object’s constructor

bspump.mysql.MySQLSource(app, self, "MySQLConnection1", config={'query': 'SELECT id, name, surname FROM people;'})

3. By creating .conf file

[pipeline:PipelineID]
query = SELECT id, name, surname FROM people;

Example

This example shows how to create a configuration file to get data from API via basic HTTPClientSource.

In first step we create .conf file where we store API key

[pipeline:SamplePipeline]
url = https://api.openweathermap.org/data/2.5/weather?q=London&units=metric&appid={api_key}
api_key = <YOUR PRIVATE API KEY>

[pipeline:SamplePipeline] in this line we specify which class the configuration applies to.
Values below this line override the same values in ConfigDefaults of specified classes.

Configuration in .conf file is accessible via self.Config method (in this case we use self.Config['api_key'] to get
API key from our .conf file)

In next step we have a sample pipeline that gets data through https://openweathermap.org/ API using API’s URL and API key from .conf
file. See more in coindesk.

#!/usr/bin/env python3

import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.http.HTTPClientSource(app, self,
 config={'url': self.Config['url'].format(api_key = self.Config['api_key'])}).on(bspump.trigger.PeriodicTrigger(app, 2)),
 bspump.common.StdJsonToDictParser(app, self),
 bspump.common.PPrintSink(app, self)
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()

 svc = app.get_service("bspump.PumpService")
 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

Running your pump with configuration files

When you want to run your pump with configuration file there are two ways to do that.

In terminal

To run your pump with a configuration file, use -c switch in the terminal, after that switch there has to be file_path/file_name.conf.

For example when you have configuration file in same folder

~python3 mypumptest.py -c mypumpconfiguration.conf

In your IDE

To run your pump in IDE you have to set the run parameters. For example in PyCharm you have to go to Run -> Edit Configurations…
and then change the run parameters to -c file_path/nameOfYourConfig.conf

[image: IDE Configuration]

How to connect to Elastic Search

BSPump supports the connection to Elastic Search platform. It is possible to connect to ES just in few lines of code.

Elastic Search Source

You can use Elastic Search Source to take data from Elastic Search index for further analysis over them (e.g. in your pump).

Prerequisites

You can access ElasticSearch only if you have ElasticSearch already installed on your server or you can try to install it locally with
this tutorial Install ElasticSearch and Kibana via Docker.

The process of taking data from Elastic Search index is simple, you will need few things.

What you will need:

	URL address of your Elastic Search

	Index with data

	Configuration file

	Register the service of ESConnection

Configuration File

You will need to create .conf file with this configuration

ElasticSearch Source
[pipeline:<<Name of your pipeline class>>:ElasticSearchSource]
index=<<Name of your index>>

Elasticsearch connection
[connection:ESConnection]
url=<<Your ElasticSearch URL address>>

The configuration file can contain additional information depending on your implementation. It is essential to include:
- index : name of the index that will be used to get data from
- url : URL of your connection with ES

For more information visit our quickstart to using configs: Configuration Quickstart.

Code example

To create a connection with Elastic Search you will need to do two things:

	Add ElasticSearchSource component to self.build method of the pipeline class

	Add trigger which take data from index every defined time

	create a service of your ES Connection.

You can implement your own ElasticSearch connection but the default connection will look like this:

import bspump.elasticsearch

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 # Adding ES Source component with trigger set up to trigger data every 5 seconds
 bspump.elasticsearch.ElasticSearchSource(app, self, "ESConnection").on(bspump.trigger.PeriodicTrigger(app, 5)),
 # Rest of the pipeline with source and processors
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()
 svc = app.get_service("bspump.PumpService")

 # Part where you add the ESConnection service
 es_connection = bspump.elasticsearch.ElasticSearchConnection(app, "ESConnection")
 svc.add_connection(es_connection)

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

It is important to include “ESConnection” as a parameter in ElasticSearch connection and source methods.

Elastic Search Sink

You can use Elastic Search sink to store data for further analysis or visualizations using Kibana.

Prerequisites

The process to create ES sink is simple and intuitive but you will need few things to start with.

What you will need:

	URL address for connection with Elastic Search

	Configuration file

	Register the service of ESConnection

Configuration File

you will need to create .conf file using following syntax

Elasticsearch connection
[connection:ESConnection]
url=<<YOUR CONNECTION URL>>

Elasticsearch sink
[pipeline:<<Name of your pipeline class>>:ElasticSearchSink]
index=<<name of your index>>
doctype=_doc

The configuration file can contain additional information depending on your implementation. It is essential to include:

	index : name of the index that will be used to store your data in ES

	url : URL of your connection with ES

	doctype : type of the document, default is _doc

For more information visit our quickstart to using configs: Configuration Quickstart.

Code example

To create a connection with Elastic Search you will need to do two things:

	Add ElasticSearchSink component to self.build method of the pipeline class

	create a service of your ES Connection.

You can implement your own ElasticSearch connection but the default connection will look like this:

import bspump.elasticsearch

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 #Rest of the pipeline with source and processors
 #Adding ES Sink component
 bspump.elasticsearch.ElasticSearchSink(app, self, "ESConnection"),
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()
 svc = app.get_service("bspump.PumpService")

 #Part where you add the ESConnection service
 es_connection = bspump.elasticsearch.ElasticSearchConnection(app, "ESConnection")
 svc.add_connection(es_connection)

 svc.add_connection(
 bspump.kafka.KafkaConnection(app, "KafkaConnection")
)

 app.run()

It is important to include “ESConnection” as a parameter in ElasticSearch connection and sink methods.

Escape From Tarkov Craft Profit Counter

About

Pipeline in this example is inspired by game Escape from Tarkov. It is a realistic FPS game. Beside shooting enemies,
Players can earn and sell items in a game market which is driven by players themselves. The price of each item is changing in
real-time based on Demand-supply mechanics. Another important game mechanic is that players can create the items themself
in their specific stations. Items created and required for each crafts can be bought on the market, so players can earn
in-game money by producing the items. Because price of each item is not stable, some crafts are more profitable than others.
My idea was to take data from an API source that gives information of all available crafts players can do together with
price of each item. I will use this data to sort and analyze the data and output them in form that might help players know
which crafts is more profitable and suitable.

In this example I will show you a process of creating pipeline with a bit more complicated use. You will learn about
creating a source that enables us to use query in our API requests.

Source

First we have to create our source to pump the data to the pipeline. We will be using aiohttp library for our custom source.
We will start by creating our source class. As you can see in the code below.

class IOHTTPSource(bspump.TriggerSource):
 def __init__(self, app, pipeline, choice=None, id=None, config=None):
 super().__init__(app, pipeline, id=id, config=config)

 async def cycle(self):
 async with aiohttp.ClientSession() as session:
 async with session.post('https://tarkov-tools.com/graphql', json={'query': query}) as response:
 if response.status == 200:
 event = await response.json()
 else:
 raise Exception("Query failed to run by returning code of {}. {}".format(response.status, query))
 await self.process(event)

As you can see in the cycle method. We are using asynchronous functions for the API requests. As you can see in the code
I am creating Session which is used in aiohttp for more information check AIOHTTP Documentation [https://docs.aiohttp.org/en/stable/client_reference.html#basic-api].
I am using post method with a query parameter as seen below.

 query = """
query {
 crafts {
 source
 duration
 rewardItems {
 quantity
 item {
 shortName
 lastLowPrice
 }
 }
 requiredItems {
 quantity
 item {
 shortName
 lastLowPrice
 }
 }
 }
}
"""

I created this query using playground interface made by the API authors. Here is the link [https://tarkov-tools.com/___graphql]
if you would like to use this API.

Now you can try to copy-paste the code below and try it for yourself.

#!/usr/bin/env python3
import aiohttp
import bspump
import bspump.common
import bspump.http
import bspump.trigger
import pandas as pd
import bspump.file

query = """
query {
 crafts {
 source
 duration
 rewardItems {
 quantity
 item {
 shortName
 lastLowPrice
 }
 }
 requiredItems {
 quantity
 item {
 shortName
 lastLowPrice
 }
 }
 }
}
"""

class IOHTTPSource(bspump.TriggerSource):
 def __init__(self, app, pipeline, choice=None, id=None, config=None):
 super().__init__(app, pipeline, id=id, config=config)

 async def cycle(self):
 async with aiohttp.ClientSession() as session:
 async with session.post('https://tarkov-tools.com/graphql', json={'query': query}) as response:
 if response.status == 200:
 event = await response.json()
 else:
 raise Exception("Query failed to run by returning code of {}. {}".format(response.status, query))
 await self.process(event)

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 IOHTTPSource(app, self).on(bspump.trigger.PeriodicTrigger(app, 5)),
 bspump.common.PPrintProcessor(app,self),
 bspump.common.NullSink(app, self),
)

If everything works correctly, you should be getting similar output.

'source': 'Workbench level 3'},
{'duration': 60000,
'requiredItems': [{'item': {'lastLowPrice': 39000,
 'shortName': 'Eagle'},
 'quantity': 2},
 {'item': {'lastLowPrice': 15000,
 'shortName': 'Kite'},
 'quantity': 2}],
'rewardItems': [{'item': {'lastLowPrice': None,
 'shortName': 'BP'},
 'quantity': 120}],
'source': 'Workbench level 3'},
{'duration': 61270,
'requiredItems': [{'item': {'lastLowPrice': 15000,
 'shortName': 'Kite'},
 'quantity': 2},
 {'item': {'lastLowPrice': 39000,
 'shortName': 'Eagle'},
 'quantity': 2},
 {'item': {'lastLowPrice': 31111,
 'shortName': 'Hawk'},
 'quantity': 2}],
'rewardItems': [{'item': {'lastLowPrice': None,
 'shortName': 'PPBS'},
 'quantity': 150}],
 .
 .
 .

There are probably hundreds of JSON lines in your console right now. It is not a nice way to output your data right? Let’s
implement our filter processor then.

Filter Processor

This filter processor is used for very specific use-case in this example. The goal as you can remember was to filter incoming data.
The goal is to create a dataframe that contains data where each row has information about station in which the craft is created, duration of the craft
,price of items needed to perform the craft, name and price of item/s that we obtain by the craft, profit of the craft, and profit per hour. As you can see
there is a lot of indexes we have to create.

class FilterByStation(bspump.Processor):
 def __init__(self, app, pipeline, id=None, config=None):
 super().__init__(app, pipeline, id=None, config=None)

 def process(self, context, event):
 my_columns = ['station', 'name', 'output_price_item', 'duration', 'input_price_item', 'profit', 'profit_per_hour']
 df = pd.DataFrame(columns=my_columns)
 for item in event["data"]["crafts"]:
 duration = round((item["duration"])/60/60, ndigits=3)
 reward = item["rewardItems"][0]
 name_output = reward["item"]["shortName"]
 quantity = reward["quantity"]
 output_item_price = reward["item"]["lastLowPrice"]
 if output_item_price is None: # checks for NULL values
 output_item_price = 0
 output_price_item = quantity * int(output_item_price)
 station_name = item["source"]
 profit = 0
 profit_p_hour = 0
 input_price_item = 0
 for item2 in range(len(item["requiredItems"])):
 required_item = item["requiredItems"][item2]
 quantity_i = required_item["quantity"]
 input_item = required_item["item"]["lastLowPrice"]
 if input_item is None:
 input_item = 0
 price_of_input_item = input_item * quantity_i
 input_price_item = input_price_item + price_of_input_item
 profit = output_price_item - input_price_item
 profit_p_hour = round(profit / duration, ndigits=3)
 df = df.append(
 pd.Series([station_name,
 name_output,
 output_price_item,
 duration,
 input_price_item,
 profit,
 profit_p_hour],
 index=my_columns), ignore_index=True)
 event = df
 return event

You can copy-paste the code above and everything should work just fine. Don’t forget to reference the processor in the self.build() method.

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 IOHTTPSource(app, self).on(bspump.trigger.PeriodicTrigger(app, 5)),
 FilterByStation(app, self),
 bspump.common.PPrintProcessor(app, self),
 bspump.common.NullSink(app, self),
)

If you want more detail of what it does. It firstly goes through the whole json,
then it gets data for each of the index if possible (otherwise zero is used instead of null), and appends the record as a row in our dataframe.
I am using Pandas in this example. If you are not familiar with Pandas make sure you checked their Documentation [https://pandas.pydata.org/docs/]

Now output in your console should like like this:

 station name output_price_item duration input_price_item profit profit_per_hour
0 Booze generator level 1 Moonshine 286999 3.056 236998 50001 16361.584
1 Intelligence Center level 2 Flash drive 180000 34.222 151498 28502 832.856
2 Intelligence Center level 2 Virtex 88000 37.611 210993 -122993 -3270.134
3 Intelligence Center level 2 SG-C10 130000 38.889 206978 -76978 -1979.429
4 Intelligence Center level 2 RFIDR 215000 53.333 40000 175000 3281.271
..
128 Workbench level 3 PBP 0 11.972 265888 -265888 -22209.155
129 Workbench level 3 M995 0 15.994 211000 -211000 -13192.447
130 Workbench level 3 M61 0 16.644 233331 -233331 -14018.926
131 Workbench level 3 BP 0 16.667 108000 -108000 -6479.870
132 Workbench level 3 PPBS 0 17.019 170222 -170222 -10001.880

[133 rows x 7 columns]

We can agree that this looks much more better than raw JSON, but this is not the end we still need to send the data
somewhere for out bot

Dataframe to csv Processor

To make the data available for our Discord bot, we will save them to a directory as a csv file. This processor is really simple
as we call only one function from the Pandas library.

You can copy paste the code of the processor

class DataFrameToCSV(bspump.Processor):
 def __init__(self, app, pipeline, id=None, config=None):
 super().__init__(app, pipeline, id=None, config=None)

 def process(self, context, event):
 event.to_csv('./Data/TarkovData.csv', index=False)
 return event

Once again dont forget to include the processor in our self.build() method.

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 IOHTTPSource(app, self).on(bspump.trigger.PeriodicTrigger(app, 5)),
 FilterByStation(app, self),
 bspump.common.PPrintProcessor(app, self),
 DataFrameToCSV(app, self),
 bspump.common.NullSink(app, self),
)

This wont change our output in console, but it should create a csv file in your current directory.

What next

Now we have a function pipeline. You can do anything with the output data. For example, I created a simple
discord bot that sends a message with the updated data you can try to make your own discord bot using this tutorial:
Getting Started with Discord Bots [https://realpython.com/how-to-make-a-discord-bot-python/].

[image: Fortnite Bot Gif]

Fortnite Current Store Example

About

In this example we will get data from one HTTP course using an API request and use filtering processors on those datas
and export the data to .csv file which can be used for example for Discord bot.

The final pipeline will get data form API request, filter some values from dataframe, does some calculation with values
and then export it to CSV file.

We will be using API from Fortnite Tracker [https://fortnitetracker.com/site-api] to get current Fortnite store items.

We will work with configuration files in this example. If you already doesn’t know how to work with configuration files
try this quickstart Configuration Quickstart.

A diagram of the finished pipeline

[image: Finished pipeline diagram]

First sample pipeline

In the code below you can see the structure of SamplePipeline which we need for this use case. The important part is the
self.build() method where its parameters are the single components of the pipeline. Do not forget that every pipeline
requires both source and sink to function correctly.

Source is a component that supply the pipeline with data. In our example we will use a specific type of source. Because we need
to Pump data from API, we need to send request to the API to receive our data. This means that our source has to be
“trigger” the request and send it to the API. For this reason we will be using a so-called trigger source. More about Trigger Source.

Because we are using Trigger Source. We need to specify which trigger we will be using. There are more types of triggers,
but in our example we will be using PeriodicTrigger, which triggers in time intervals specified in the parameter.
bspump.trigger.PeriodicTrigger(app, <<Time parameter in seconds>>))

Each pipeline requires a sink. We will use PPrintSink for now to see incoming data. But in the next steps we will be
using NullSink which I describe later.

First we need to create configuration file. Create config.conf file in your pump folder. To this configuration file
copy-paste this chunk of code and rewrite <YOUR PRIVATE API> section with your API key which you will get by
following steps here [https://fortnitetracker.com/site-api]

[pipeline:SamplePipeline]
url = https://api.fortnitetracker.com/v1/store
api_key = <YOUR PRIVATE API KEY>

After you have your configuration file finished you can copy-paste code below and try it yourself. Be sure you have
BSPump module installed. If not follow our guide Installing BSPump module

import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):
 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 bspump.http.HTTPClientSource(app, self,
 config={'url': self.Config['url']},
 headers={'TRN-Api-Key': self.Config['api_key']}).on(bspump.trigger.PeriodicTrigger(app, 2)),
 bspump.common.PPrintSink(app, self),
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()

 svc = app.get_service("bspump.PumpService")

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

You can run this code with ~ python3 yourpumpname.py -c config.conf command in terminal.

Well done! Now we are pumping data about items which are in Fortnite store right now.

You should get output like this:

~ python3 docs1.py -c config.conf
BitSwan BSPump version 21.11-17-g6b346fd
04-Feb-2022 18:00:30.503021 NOTICE asab.application is ready.
1 pipeline(s) ready.
(b'[\r\n {\r\n "imageUrl": "https://trackercdn.com/legacycdn/fortnite/8BD06'
 b'909_large.png",\r\n "manifestId": 6909,\r\n "name": "Marsh Walk",\r'
 b'\n "rarity": "Sturdy",\r\n "storeCategory": "BRSpecialFeatured",\r'
 b'\n "vBucks": 500\r\n },\r\n {\r\n "imageUrl": "https://trackercdn.c'
 b'om/legacycdn/fortnite/275915210_large.png",\r\n "manifestId": 15210,\r\n '
 b' "name": "Arcane Vi",\r\n "rarity": "Epic",\r\n "storeCategory": "BR'
 b'SpecialFeatured",\r\n "vBucks": 0\r\n },\r\n {\r\n "imageUrl": "http'
 b's://trackercdn.com/legacycdn/fortnite/2AC415212_large.png",\r\n "manife'
 b'stId": 15212,\r\n "name": "Piltover Warden Hammer",\r\n "rarity": "Epi'
 b'c",\r\n "storeCategory": "BRSpecialFeatured",\r\n "vBucks": 800\r\n '
 b' },\r\n {\r\n "imageUrl": "https://trackercdn.com/legacycdn/fortnite/6C4'
 b'015364_large.png",\r\n "manifestId": 15364,\r\n "name": "Marsha",\r'
 b'\n "rarity": "Epic",\r\n "storeCategory": "BRSpecialFeatured",\r\n '
 b' "vBucks": 1500\r\n },\r\n {\r\n "imageUrl": "https://trackercdn.co'
 b'm/legacycdn/fortnite/46F66923_large.png",\r\n "manifestId": 6923,\r\n '
 b'"name": "Marshmello",\r\n "rarity": "Quality",\r\n "storeCategory": "B'
 b'RSpecialFeatured",\r\n "vBucks": 1500\r\n },\r\n {\r\n "imageUrl": "'
 b'https://trackercdn.com/legacycdn/fortnite/B84F13565_large.png",\r\n "ma'
 b'nifestId": 13565,\r\n "name": "Arcane Jinx",\r\n "rarity": "Epic",'
 b'\r\n "storeCategory": "BRSpecialFeatured",\r\n "vBucks": 0\r\n },\r\n'
 b' {\r\n "imageUrl": "https://trackercdn.com/legacycdn/fortnite/61841528'
 b'7_large.png",\r\n "manifestId": 15287,\r\n "name": "Goblin Glider"'
 b',\r\n "rarity": "Epic",\r\n "storeCategory": "BRSpecialFeatured",\r'
 b'\n "vBucks": 800\r\n },\r\n ...

Export to CSV

Awesome! Now we are pumping data but we want to store them somewhere. In the end we want to create Discord Bot which will
show us current Fortnite Store when we write command to discord chat. Discord bot can work easily with CSV file so we
need to export our data do .csv file.

We have to import pandas library to our pump which can export JSON file to CSV file and then we define our exporting processor.

The processor convert JSON file to dataframe with pandas library and then export it as CSV file and create specified file
in same folder like our pump (you can define path you want).

This will be our processor:

class JSONtoCSV(bspump.Processor):

 def process(self, context, event):
 df = pd.read_json(event)
 event = df.to_csv('data.csv', index=False)
 return event

Now we add this processor to our pump, we have to change PPrintSink to NullSink because we don’t want to store or print
data anywhere, we will have it in our CSV file.

You can copy-paste code below and look into your pump folder if there is a CSV file with our data.

import bspump
import bspump.common
import bspump.http
import bspump.trigger
import pandas as pd

class JSONtoCSV(bspump.Processor):

 def process(self, context, event):
 df = pd.read_json(event)
 event = df.to_csv('data.csv', index=False)
 return event

class SamplePipeline(bspump.Pipeline):
 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.http.HTTPClientSource(app, self,
 config={'url': self.Config['url']},
 headers={'TRN-Api-Key': self.Config['api_key']}).on(bspump.trigger.PeriodicTrigger(app, 2)),
 JSONtoCSV(app, self),
 bspump.common.NullSink(app, self),
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()

 svc = app.get_service("bspump.PumpService")

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

The CSV file should looks this way:

[image: Second Output Pic]

Processor with pandas script

You can see that in our data set there aren’t so many interesting datas. So we want to add column with coefficient of
price over rarity which will be useful in our Discord bot, because player could know which items is the most advantageous
for purchase.

We create basic pandas script to go through rows and calculate the coefficient from rarity and vBucks column values
and then add to list which will create new column called Coef at the end. More about pandas here [https://pandas.pydata.org/docs/]

You have to convert the dataframe back to JSON file, because pipeline can’t work with dataframes.

The processor:

class AddRarityPriceCoef(bspump.Processor):

 def process(self, context, event):
 df = pd.read_json(event)
 coefs = []
 for row in df.itertuples():
 if row.vBucks == 0:
 price = 1
 else:
 price = row.vBucks
 if row.rarity.lower() == 'handmade':
 coefs.append((1/price)*100)
 elif row.rarity.lower() == 'uncommon':
 coefs.append((2/price)*100)
 elif row.rarity.lower() == 'rare':
 coefs.append((3/price)*100)
 elif row.rarity.lower() == 'epic':
 coefs.append((4/price)*100)
 elif row.rarity.lower() == 'legendary':
 coefs.append((5/price)*100)
 elif row.rarity.lower() == 'mythic':
 coefs.append((6/price)*100)
 elif row.rarity.lower() == 'exotic':
 coefs.append((7/price)*100)
 else:
 coefs.append(1)
 df['Coef'] = coefs
 event = df.to_json()
 return event

Now we add the processor to our pump and after you copy-paste the code and run the pump you can see that the new column
was added with our calculated values.

#!/usr/bin/env python3

import bspump
import bspump.common
import bspump.http
import bspump.trigger
import pandas as pd

class JSONtoCSV(bspump.Processor):

 def process(self, context, event):
 df = pd.read_json(event)
 print(df)
 event = df.to_csv('data.csv', index=False)
 return event

class AddRarityPriceCoef(bspump.Processor):

 def process(self, context, event):
 df = pd.read_json(event)
 coefs = []
 for row in df.itertuples():
 if row.vBucks == 0:
 price = 1
 else:
 price = row.vBucks
 if row.rarity.lower() == 'handmade':
 coefs.append((1/price)*100)
 elif row.rarity.lower() == 'uncommon':
 coefs.append((2/price)*100)
 elif row.rarity.lower() == 'rare':
 coefs.append((3/price)*100)
 elif row.rarity.lower() == 'epic':
 coefs.append((4/price)*100)
 elif row.rarity.lower() == 'legendary':
 coefs.append((5/price)*100)
 elif row.rarity.lower() == 'mythic':
 coefs.append((6/price)*100)
 elif row.rarity.lower() == 'exotic':
 coefs.append((7/price)*100)
 else:
 coefs.append(1)
 df['Coef'] = coefs
 event = df.to_json()
 return event

class SamplePipeline(bspump.Pipeline):
 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 bspump.http.HTTPClientSource(app, self,
 config={'url': self.Config['url']},
 headers={'TRN-Api-Key': self.Config['api_key']}).on(bspump.trigger.PeriodicTrigger(app, 2)),
 # Add price over rarity coefficient to dataframe
 AddRarityPriceCoef(app, self),
 # Converts incoming json event to CSV data
 JSONtoCSV(app, self),
 # We can also push datas to ES or Kafka
 bspump.common.NullSink(app, self),
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()

 svc = app.get_service("bspump.PumpService")

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

Data in CSV file:

[image: Third Output Pic]

Conclusion

So, in this example we learnt how to get data from basic API request and export it to CSV file. Then we create script
with pandas library to make price over rarity coefficient and add it as a new column to our dataset. You can also add
some other processors which can filter data or make some calculation over the datas.

What next?

Now I will show you how can you use the pump to create your Discord bot for yourself or your friends.

You can find how to create Discord bot here [https://realpython.com/how-to-make-a-discord-bot-python/]

The following discord bot can looks like this:

[image: Fortnite Bot Gif]

Install ElasticSearch and Kibana via Docker

About

This example is focused on how to install ElasticSearch and Kibana on your localhost and use the ES via Kibana GUI.
We will be using Docker and Docker compose to install ElasticSearch environment. Be sure you have set up Docker and Docker compose,
if not follow this guide to install Docker [https://docs.docker.com/get-docker/] and Docker compose [https://docs.docker.com/compose/install/].

In the end we use Docker image of our Weather Pump, which can be found here Weather API Example, to pump data to index in our local ElasticSearch.

Docker is a platform which provides the ability to package and run an application in a loosely isolated environment called a container.
More about Docker [https://docs.docker.com/get-started/overview/] you can also read our quickstart how to use Docker with BSPump module here: Docker File Quickstart

Docker compose is a tool for defining and running multi-container Docker applications. More about Docker compose [https://docs.docker.com/compose/].

Docker compose with ES and Kibana

Now we create Docker compose file to run ElasticSearch and Kibana on our localhost. Create docker-compose.yml file in your specified folder.
In docker compose you have to define your services which you want to use. In our case we define elasticsearch and kibana.
We choose which image of ES and Kibana we want to use. The image will automatically download from official Docker hub of Elastic.
Then we set a names of container and set a condition when the container restart after unexpected exit. In next step we set the environment of container.
In this case we don’t want to have security, we will have just one ElasticSearch single-node and we set up a connection between ES and Kibana in ELASTICSEARCH_HOSTS.
Volumes is where the data will be stored in container file system. And in the end we specified on which localhost port container will be running.
You can also set that one service will be wait for another in depends_on.

Just copy-paste this chunk of code into your docker-compose.yml file:

version: '3.9'
services:
 # Elastic Search single node cluster
 elasticsearch:
 image: docker.elastic.co/elasticsearch/elasticsearch:8.0.0
 container_name: elasticsearch
 restart: always
 environment:
 - xpack.security.enabled=false
 - discovery.type=single-node
 volumes:
 - elasticsearch-data-volume:/usr/share/elasticsearch/data/
 ports:
 - 9200:9200
 - 9300:9300
 # Kibana UI for Elastic Search
 kibana:
 image: docker.elastic.co/kibana/kibana:8.0.0
 container_name: kibana
 restart: always
 environment:
 - ELASTICSEARCH_HOSTS=http://elasticsearch:9200
 ports:
 - 5601:5601
 depends_on:
 - elasticsearch

volumes:
 elasticsearch-data-volume:
 driver: local

Now when we have defined your docker compose file we can try to run our first Docker compose app. Be sure you are in same folder like your
docker-compose file and type ~ docker compose up -d into terminal.
The -d flag means that your app will be running in detached mode. You can check
if all containers are running with docker ps command.

You should see this:

[image: Terminal Output 1]
You can also enter the Kibana GUI. Go to your browser and type localhost:5601 into search bar. You can see that you type localhost port which
we define in the docker compose file.

Wow! If everything is okay you will see this:

[image: Terminal Output 2]

Run Weather pump to pump data to Elastic Search index

Well done! We installed ElasticSearch and Kibana locally and we are able to access the ElasticSearch with Kibana GUI.
Now we can try to run pump which take weather data and we store them in Elasticsearch index. We already build Weather pump
image so you basically pull the image from Docker hub and run it.

To do it simply run this command in your terminal:

~ docker run --network=host -dit lukasvecerka/bspump-weather

You have to set --network=host which mean that your container can now access the localhost on your host machine.

If you type docker ps the incoming output in terminal should be this:

[image: Terminal Output 3]
Now go to this [http://localhost:5601/app/management/data/index_management/indices] url address. Its page of Index Management where you can
see all of your stored indexes.

If your containers are running correctly you can see that there is index called weather-pump-test. This is the index where we store data from
our weather pump.

[image: Terminal Output 4]

Summarize

That’s all for this example! In this example we learnt how to work with Docker and especially with Docker compose tool. How to set services in
our application in Docker compose. As conclusion we installed ElasticSearch and Kibana locally and pump data on index in ElasticSearch with our pump.

What next

In the future you can add more services into your docker compose application and extend your environment with this services. You can build your
own Docker image and push it to Docker hub and then use it in your docker compose.

More about how to create BSPump Docker image is here Docker File Quickstart

Install Kafka and KafDrop via Docker

About

This example is focused on how to install Kafka nad KafDrop on your localhost and search topics from Kafka in KafDrop.
We will be using Docker and Docker Compose to install ElasticSearch environment. Be sure you have set up Docker and Docker Compose.
If not follow this guide to install Docker [https://docs.docker.com/get-docker/] and Docker compose [https://docs.docker.com/compose/install/].

In the end we will use Docker image of our Coindesk API pump, which can be found here coindesk, to pump data to topic in our local Kafka.

Docker is a platform which provides the ability to package and run an application in a loosely isolated environment called a container.
More about Docker [https://docs.docker.com/get-started/overview/].

You can also read our quickstart how to use Docker with BSPump module here: Docker File Quickstart

Docker compose is a tool for defining and running multi-container Docker applications. More about Docker compose [https://docs.docker.com/compose/].

Docker compose with Kafka and KafDrop

Now we create Docker Compose file to run Kafka and KafDrop on our localhost. Create docker-compose.yml file in our desired folder.
In docker compose you have to define your services which you want to use. Each service is one container which will be running.
In our case we define zookeeper, kafka and kafdrop. ZooKeeper is essentially a service for distributed systems offering a hierarchical key-value store,
which is used to provide a distributed configuration service, synchronization service, and naming registry for large distributed systems.

Services are consist of these values:

	image: we choose which image will be download from DockerHub (after we run the docker compose its automatically pull the image)

	hostname: name of service in multi-container network

	ports: specified ports where the container will runs

	environments: setting up the services configuration (e.g. Kafka Broker ID etc.)

	depends_on: service will wait until specified service in depends_on will start

	restart: service try to restart after unexpected end

Just copy-paste this chung od code into you docker-compose.yml file:

version: '3.9'
services:
 zookeeper:
 image: zookeeper:3.4.9
 hostname: zookeeper
 ports:
 - "2181:2181"
 environment:
 ZOO_MY_ID: 1
 ZOO_PORT: 2181
 ZOO_SERVERS: server.1=zookeeper:2888:3888
 volumes:
 - /data/zookeeper/data:/data
 - /data/zookeeper/datalog:/datalog

 kafka1:
 image: confluentinc/cp-kafka:5.3.0
 hostname: kafka1
 ports:
 - "9092:9092"
 environment:
 KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka1:19092,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092
 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
 KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
 KAFKA_ZOOKEEPER_CONNECT: "zookeeper:2181"
 KAFKA_BROKER_ID: 1
 KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
 volumes:
 - /data/kafka1/data:/var/lib/kafka/data
 depends_on:
 - zookeeper

 kafdrop:
 image: obsidiandynamics/kafdrop
 restart: "no"
 ports:
 - "9000:9000"
 environment:
 KAFKA_BROKERCONNECT: "kafka1:19092"
 depends_on:
 - kafka1

Now when we have defined your docker compose file we can try to run our first Docker compose app. Be sure you are in same folder like your
docker-compose file and type ~ docker compose up -d into terminal.
The -d flag means that your app will be running in detached mode. You have to wait little bit
when all the images is pulled. After that you can check
if all containers are running with docker ps command.

You should see this:

[image: Terminal Output 1]
You can also enter the KafDrop. Go to your browser and type localhost:9000
to the search bar. You can see that you specify the port that we setup in docker compose.

Wow! If everything work correctly you can see thin page:

[image: KafDrop Home Page]

Pump data to Kafka topic

Well done! We’ve installed Kafka and KafDrop locally and we are able to see topics in KafDrop. Now we can try to
run pump which take data from CoinDesk API and store them in Kafka topic. We already build the Coindesk pump image
so you basically use the image and run it.

Simply type this command to your terminal and we will see what’s happen.

~ docker run --network=host -dit lukasvecerka/bspump-kafkasink-example

You have to set --network=host which mean that your container can now access the localhost on your host machine.

Now when you look into KafDrop you can see coindesk-data topic:

[image: Coindesk topic]
You can look on messages which you pump to this topic. Just click on topic name, then on View Messages and again on View Messages
and you should see something like this:

[image: Coindesk topic messages]

Summarize

That’s all for this example! In this example we learnt how to work with Docker and especially with Docker compose tool.
We learnt how to set services in our application in Docker compose. In the end we installed Kafka, Zookeeper and KafDrop
locally and we run pump with Docker container to pump data to Kafka topic.

What next

In the future you can add more services into your docker compose application nad extend your environment with this services.
You can build your own Docker image and push it to Docker hub and then use it in your docker compose or simply run it as a container.

More about how to create BSPump Docker image is here Docker File Quickstart

Docker File Quickstart

About

This tutorial will help you to create your own Docker image for your pipeline. First things first, I would recommend you to go through
Docker Documentation [https://docs.docker.com/get-started/] if this is your first time with Docker.

quickstart to docker

Docker can help you with deployment of your app on other devices. Everything you need to do is to setup docker one device
and then it works on every other device. Firstly you have to create docker image for you application. In our case we will create
image for our BS Pipeline. To do that we have to firstly create a docker file for our pipeline.

We will be using code from one of our examples coindesk. You can simply copy paste the code and everything should be working
if you have a bspump python module installed

docker file

Creating a docker file is very easy thing to do. You have only copy-paste the code below

FROM teskalabs/bspump:nightly

WORKDIR /opt/coindesk

COPY coindesk.py ./coindesk.py

CMD ["python3", "coindesk.py"]

To explain what is does:

1. keyword FROM specifies what docker image you are using. In this case we will be using a “preset” for a bspump.
This image is running on Alpine linux and has all libraries installed.

	WORKDIR specifies the name of your working directory to where other files will be copied

	COPY this command is used to copy any files you will be using including the source code of your app.

4. CMD is a command for running commands in your container. You have to write a command sequence as a list where
each element is one word of the command. In our case we want to execute our program using python3 coindesk.py

Creating docker image

To build your docker image use this command. Make sure to use -t switch and match <<your docker nickname>>
to your docker login name. This must match for successful push of the image to the docker desktop.

docker build -t <<your docker nickname>>/<<name of your image>> .

Now you can try to run your docker image using:

docker run -it <<your docker nickname>>/<<name of your image>>

now your container should be running in your console. If you want to terminate it open another console and type

docker ps

This command will show you all your running containers and with

docker kill <<CONTAINER ID>>

It will terminate the container. Container ID should be found next to the running image after typing docker ps

If you want to see all containers that were initiated type

docker ps -a

Now if you want to use this image from other devices for docker compose for example. You can push the image to your repository
using:

docker push <<your docker nickname>>/<<name of your image>>

if you haven’t tagged your container before use

docker tag <<name of your image>> <<your docker nickname>>/<<name of your image>>

Now you should have running docker container and you know how to push it to your docker hub. If you are still not sure how to
use docker I would recommend to check docker documentation once again. Docker is not complicated, but it takes some time to get used to it.

additional commands

TODO

what next

if you have successfully created your own docker image you can try to connected your pipeline with other technologies like elastic search
or kafka. Check our Install ElasticSearch and Kibana via Docker for working with docker compose.

WebSocket Example

This example will show you how can you can connect two pipelines connection using socket server connection.

what is socket

Socket is a peer-to-peer connection between two computers. You can imagine it like two computers have access to one
directory and can share data between each other.

explain server/client consumer/producer

The pipeline you will create can be either a server or a client. Server is a script that listens on a certain IP address
and port, client is the one who “connects” to a certain port of the server. Both client and server can be either consumers,
meaning that consumer (consumes) the data, and producer is the one who produce the data. The specific combination of server/client
consumer/producers mainly depends on what do you wanna do. In this example we will show both server/consumer - client/producer
type of connection and server/producer - client/consumer connection.

Server consumer

Server consumer means that this pipeline will be waiting for any client trying to make a connection and if there is a connection
with a client the server will get the incoming data into its pipeline. This server pipeline will use Websocket Source as its Source.

To create this kind of pipeline we have to use our WebSocketSource and specify the address and port on which it will listen for
any possible connections. In this example we will run both pipelines on localhost, so you do not have to waste your time setting up your own network.

#!/usr/bin/env python3
import bspump
import bspump.common
import bspump.web
import bspump.http

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.http.WebSocketSource(app, self),
 bspump.common.PPrintSink(app, self)
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication(web_listen="0.0.0.0:8080") #set web_listen variable to the address you want

 svc = app.get_service("bspump.PumpService")

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 #you have to use add_get method to set up address using the handler.
 app.WebContainer.WebApp.router.add_get('/bspump/ws', pl.WebSocketSource.handler)

 app.run()

You can copy-paste the code above. The pipeline is really simple the only thing you have to do is to add WebSocket Source.
Just make sure to set up the web_listen variable in the BSPumpApplication object, and do not forget that you have to call the add_get method TODO

Now you can run the script and your server should be running listening for any possible connections.

Client producer

We have a running server, so now we have to create a client that can connect to the server and feed it with the data.

#!/usr/bin/env python3
import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.Counter = 1

 # self.Source = bspump.common.InternalSource(app, self)

 self.build(
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 # Trigger that triggers the source every second (based on the method parameter)
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),

 bspump.http.HTTPClientWebSocketSink(app, self, config={
 'url': 'http://127.0.0.1:8080/bspump/ws',
 })

)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()

 svc = app.get_service("bspump.PumpService")

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

Creating the client is much more easier than the server. All you have to do is to use HTTPClientSocketSink with config
where you specify the url of the server you want to connect to. In this case it is http://127.0.0.1:8080/bspump/ws

what next

This example should have you given an idea how to use and connect pipelines using socket connection.

Blank App

In this tutorial you will learn how divide a pipeline into several file components. This approach is beneficial for creating
more advanced pipelines as you can use some of the components without the need of copy pasting code. It is also much more clear.
This is a general guide so you can apply this structure to your pipeline. We will be using so-called blank app in
this tutorial for simplicity you can find the code here [https://github.com/LibertyAces/BitSwanPump-BlankApp].

In this tutorial we will use code from our previous tutorial coindesk, but don’t worry once you create this structure
it is easy to make changes for your own pipeline.

first you will create similar file hierarchy like on this image.

[image: file hierarchy]

pipeline

In this file you will have your pipelien with self.build method. If you want to use your own processors, sources
or sinks you have to import them from another file. In this example I want to use my processor for coindesk, so I have to use

from .processor import EnrichProcessor

and then I can reference it in self.build method.

import bspump
import bspump.common
import bspump.http
import bspump.trigger

from .processor import EnrichProcessor

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 # Source that GET requests from the API source.
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 # Trigger that triggers the source every second (based on the method parameter)
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 # Converts incoming json event to dict data type.
 bspump.common.StdJsonToDictParser(app, self),
 # Adds a CZK currency to the dict
 EnrichProcessor(app, self),
 bspump.common.StdDictToJsonParser(app,self),
 # prints the event to a console
 bspump.common.PPrintSink(app, self),
)

Only remember that name of your pipeline (the name of the class) will be used in other files.

processor

To create processor file you can simply copy-paste your processor class.

	note

	Do not forget to import bspump module, so your processor can function normally.

import bspump

class EnrichProcessor(bspump.Processor):
 def __init__(self, app, pipeline, id=None, config=None):
 super().__init__(app, pipeline, id=None, config=None)

 def convertUSDtoJPY(self, usd):
 return usd * 113.70 # outdated rate usd/jpy

 def process(self, context, event):
 jpyPrice = str(self.convertUSDtoJPY(event["bpi"]["USD"]["rate_float"]))

 event["bpi"]["JPY"] = {
 "code": "JPY",
 "symbol": "¥",
 "rate": ''.join((jpyPrice[:3], ',', jpyPrice[3:])),
 "description": "JPY",
 "rate_float": jpyPrice
 }

 return event

service

In service you have to register your pipeline. You can also register more pipelines.

	note

	Remember to import your pipeline class here, so you can register the pipeline.

import asab

from .pipeline import SamplePipeline

class BlankService(asab.Service):

 def __init__(self, app, service_name="blank.BlankService"):
 super().__init__(app, service_name)

 async def initialize(self, app):
 svc = app.get_service("bspump.PumpService")

 # Create and register all connections here

 # Create and register all matrices here

 # Create and register all lookups here

 # Create and register all pipelines here

 self.SamplePipeline = SamplePipeline(app, "SamplePipeline")
 svc.add_pipeline(self.SamplePipeline)

 await svc.initialize(app)

self.SamplePipeline = SamplePipeline(app, "SamplePipeline")
svc.add_pipeline(self.SamplePipeline)

These two lines of the code register your pipeline.

module

In module you create a module of your service. You can create more modules from several services.

import asab

from .service import BlankService

class BlankModule(asab.Module):
 def __init__(self, app):
 super().__init__(app)

 self.BlankService = BlankService(app)

app

In app you create the whole application. You have to only include the module you have created. You can include more modules here.

import bspump

class BlankAppApplication(bspump.BSPumpApplication):

 def __init__(self):
 super().__init__()

 from .module import BlankModule
 self.add_module(BlankModule)

init

create this file for initialization of your pipeline.

from .app import BlankAppApplication

how to start the pipeline

to start your pipeline create another file. For example, bspump-blank-app.py and copy-paste this code

from mypipeline.app import BlankAppApplication

if __name__ == '__main__':
 app = BlankAppApplication()
 app.run()

mypipeline.app is the path to your app python file. and BlankAppApplication is the name of your pipeline class.

Then you create an object of your class and run it.

Reference Documentation

BSPump Reference Documentation describes the bspump Python library. Based on ASAB [https://asab.readthedocs.io/en/latest/] library. ASAB is a platform that enables BSPump to be efficient and easy to configure.

	Basics
	Pipeline

	Source

	Source Construction

	Processor
	Sink

	Connection

	Top Level Objects
	BSPumpApplication

	BSPumpService

	Common
	Aggregator

	Bytes

	Flatten

	Hexlify

	Iterator

	Json

	Mapping

	Null

	Print

	Routing

	Tee

	Time

	Transfr

	Advanced
	Generator

	Analyzer

	Lookup

	Anomaly

	Technologies
	Apache Kafka

	Elastic Search

	Files

	InfluxDB

	IPC and Socket

	FTP

	RabbitMQ / AMQP

Basics

Basics covers the most fundamental components of a BSPump. We will start with the “backbone” of the BSPump, which is called a “pipeline”.

Pipeline

The pipeline class is responsible for construction of the BSPump pipeline itself. Its methods enable us to maintain
a working lifecycle of the system.

Pipeline is responsible for data processing in BSPump.
Individual Pipeline objects work asynchronously and independently of one another (provided dependence is not defined explicitly – for instance on a message source from some other pipeline) and can be triggered in unlimited numbers.
Each Pipeline is usually in charge of one concrete task.

Pipeline has three main components:

	Source

	Processor

	Sink

[image: Pipeline diagram]
Source connects different data sources with the Pipeline to be processed

Multiple sources

A Pipeline can have multiple sources.
They are simply passed as a list of sources to a Pipeline build() method.

class MyPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 [
 MySource1(app, self),
 MySource2(app, self),
 MySource3(app, self),
]
 bspump.common.NullSink(app, self),
)
:meta private:

The main component of the BSPump architecture is a so-called Processor.
This object modifies, transforms and enriches events.
Moreover, it is capable of calculating metrics and creating aggregations, detecting anomalies or react to known as well as unknown system behaviour patterns.

Processors differ as to their functions and all of them are aligned according to a predefined sequence in pipeline objects.
As regards working with data events, each Pipeline has its unique task.

Processors are passed as a list of Processors to a Pipeline build() method

class MyPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 [
 MyProcessor1(app, self),
 MyProcessor2(app, self),
 MyProcessor3(app, self),
]
 bspump.common.NullSink(app, self),
)
:meta private:

Sink object serves as a final event destination within the pipeline given.
Subsequently, the event is dispatched/written into the system by the BSPump.

	
class Pipeline(app, id=None, config=None)

	Bases: ABC, Configurable

Description: Pipeline is …

An example of The Pipeline construction:

class MyPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 [
 MySource(app, self),
 MyProcessor(app, self),
 MyProcessor2(app, self),
]
 bspump.common.NullSink(app, self),
)

Pipeline construction

The following are the core methods of the pipeline.

	
Pipeline.build(source, *processors)

	This method enables to add sources, Processors, and sink to create the structure of the Pipeline.

Parameters

	sourcestr
	ID of a source.

	*processorsstr, list optional
	ID of Processor or list of IDs.

	
Pipeline.set_source(source)

	Sets a specific source or list of sources to the Pipeline.

Parameters

	sourcestr, list optional
	ID of a source.

If a list of sources is passed to the method, it adds the entire list of sources to the Pipeline.

	
Pipeline.append_processor(processor)

	Adds a Processors to the current Pipeline.

Parameters

	processorstr
	ID of a processor.

	Hint

	The Generator can be added by using this method. It requires a depth parameter.

	
Pipeline.remove_processor(processor_id)

	Removes a specific processor from the Pipeline.

Parameters

	processor_idstr
	ID of a processor.

	Returns

	Error when processor is not found.

	
Pipeline.insert_before(id, processor)

	Inserts the Processor into the Pipeline in front of another processor specified by ID.

Parameters

	idstr
	ID of a processor that we want to insert.

	processorstr
	Name of the processor in front of which will be inserted the new processor.

	Returns

	True on success. False if ID was not found.

	
Pipeline.insert_after(id, processor)

	Inserts the Processor into the Pipeline behind another Processors specified by ID.

Parameters

	idstr
	ID of a processor that we want to insert.

	processorstr
	Name of a processor after which we insert our processor.

	Returns

	True if successful. False if ID was not found.

	
Pipeline.iter_processors()

	Uses python generator routine that iterates through all Processors in the Pipeline.

	Yields

	A Processor from a list in the Pipeline.

Other Pipeline Methods

The additional methods below bring more features to the pipeline. However, many of them are very important and almost necessary.

	
Pipeline.build(source, *processors)

	This method enables to add sources, Processors, and sink to create the structure of the Pipeline.

Parameters

	sourcestr
	ID of a source.

	*processorsstr, list optional
	ID of Processor or list of IDs.

	
Pipeline.iter_processors()

	Uses python generator routine that iterates through all Processors in the Pipeline.

	Yields

	A Processor from a list in the Pipeline.

Other pipeline methods

	
Pipeline.time()

	Returns correct time.

	Returns

	App.time()

	Hint

	More information in the ASAB documentation in UTC Time [https://asab.readthedocs.io/en/latest/asab/application.html#utc-time].

	
Pipeline.get_throttles()

	Returns components from Pipeline that are throttled.

	Returns

	self._throttles
Return list of throttles.

	
Pipeline.is_error()

	Returns False when there is no error, otherwise it returns True.

	Returns

	self._error is not None.

	
Pipeline.set_error(context, event, exc)

	When called with exc is None, it resets error (aka recovery).

When called with exc, it sets exceptions for soft errors.

Parameters

	contexttype?
	Context of an error.

	eventData with time stamp stored in any data type usually is in JSON.
	You can specify an event that is passed to the method.

	excException.
	Python default exceptions.

	
Pipeline.handle_error(exception, context, event)

	Used for setting up exceptions and conditions for errors. You can implement it to evaluate processing errors.

Parameters

	exceptionException
	Used for setting up a custom Exception.

	contextinformation
	Additional information can be passed.

	eventData with time stamp stored in any data type, usually it is in JSON.
	You can specify an event that is passed to the method.

	Returns

	False for hard errors (stop the Pipeline processing). True for soft errors that will be ignored.

Example:

class SampleInternalPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 bspump.common.InternalSource(app, self),
 bspump.common.JSONParserProcessor(app, self),
 bspump.common.PPrintSink(app, self)
)

 def handle_error(self, exception, context, event):
 if isinstance(exception, json.decoder.JSONDecodeError):
 return True
 return False

	
Pipeline.link(ancestral_pipeline)

	Links this Pipeline with an ancestral Pipeline.
This is needed e. g. for a propagation of the throttling from child Pipelines back to their ancestors.
If the child Pipeline uses InternalSource, it may become throttled because the internal queue is full. If so,
the throttling is propagated to the ancestral Pipeline, so that its source may block incoming events until the
internal queue is empty again.

Parameters

	ancestral_pipelinestr
	ID of a Pipeline that will be linked.

	
Pipeline.unlink(ancestral_pipeline)

	Unlinks an ancestral Pipeline from this Pipeline.

Parameters

	ancestral_pipelinestr
	ID of a ancestral Pipeline that will be unlinked.

	
Pipeline.throttle(who, enable=True)

	Enables throttling method for a chosen pipeline and its ancestral pipelines,x if needed.

Parameters

	whoID of a processor.
	Name of a processor that we want to throttle.

	enablebool, defualt True
	When True, content of argument ‘who’ is added to _throttles list.

	
async Pipeline.ready()

	Checks if the Pipeline is ready. The method can be used in source: await self.Pipeline.ready().

	
Pipeline.is_ready()

	This method is a check up of the event in the Event class.

	Returns

	_ready.is_set().

	
Pipeline.inject(context, event, depth)

	Injects method serves to inject events into the Pipeline’s depth defined by the depth attribute.
Every depth is interconnected with a generator object.

Parameters

	contextstring
	Information propagated through the Pipeline.

	eventData with time stamp stored in any data type, usually it is in JSON.
	You can specify an event that is passed to the method.

	depthint
	Level of depth.

	Note

	For normal operations, it is highly recommended to use process method instead.

	
async Pipeline.process(event, context=None)

	Process method serves to inject events into the Pipeline’s depth 0,
while incrementing the event in metric.

Parameters

	eventData with time stamp stored in any data type, usually it is in JSON.
	You can specify an event that is passed to the method.

	contextstr, default None
	You can add additional information needed for work with event streaming.

	Hint

	This is recommended way of inserting events into a Pipeline.

	
Pipeline.create_eps_counter()

	Creates a dictionary with information about the Pipeline. It contains eps (events per second), warnings and errors.

	Returns

	self.MetricsService
Creates eps counter using MetricsService.

	Note

	EPS counter can be created using this method or dicertly by using MatricsService method.

	
Pipeline.ensure_future(coro)

	You can use this method to schedule a future task that will be executed in a context of the Pipeline.
The Pipeline also manages a whole lifecycle of the future/task, which means,
it will collect the future result, trash it, and mainly it will capture any possible exception,
which will then block the Pipeline via set_error().

Parameters

	coro??
	??

	Hint

	If the number of futures exceeds the configured limit, the Pipeline is throttled.

	
Pipeline.locate_source(address)

	Locates a sources based on its ID.

Parameters

	addressstr
	ID of the source.

	
Pipeline.locate_connection(app, connection_id)

	Finds a connection by ID.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html].

	connection_idstr
	ID of connection we want to locate.

	Returns

	connection

	
Pipeline.locate_processor(processor_id)

	Finds a Processor by ID.

Parameters

	processor_idstr
	ID of a Processor.

	Returns

	processor

	
Pipeline.start()

	Starts the lifecycle of the Pipeline.

	
async Pipeline.stop()

	Gracefully stops the lifecycle of the Pipeline.

Source

	
class Source(app, pipeline, id=None, config=None)

	Bases: Configurable

Source class is responsible for connecting to a source, and propagating events or other data from the source to the processors.

	
Source.__init__()

	Set the initial ID, Pipeline and Task.

Parameters

	appApplication
	Name of an Application <https://asab.readthedocs.io/en/latest/asab/application.html#>`_ .

	pipelineaddress of a pipeline
	Name of a Pipeline.

	idstr, default None
	Name of a the Pipeline.

	configcompatible config type , default None
	Option for adding a configuration file.

Source Construction

Source is an object designed to obtain data from a predefined input.
The BSPump contains a lot of universally usable, specific source objects, which are capable of loading data from known data interfaces.
The BitSwan product further expands these objects by adding source objects directly usable for specific cases of use in industry field given.

Each source represent a coroutine/Future/Task that is running in the context of the main loop.
The coroutine method main() contains an implementation of each particular source.

Source MUST await a Pipeline ready state prior producing the event.
It is acomplished by await self.Pipeline.ready() call.

	
class Source(app, pipeline, id=None, config=None)

	Bases: Configurable

Source class is responsible for connecting to a source, and propagating events or other data from the source to the processors.

	
__init__(app, pipeline, id=None, config=None)

	Set the initial ID, Pipeline and Task.

Parameters

	appApplication
	Name of an Application <https://asab.readthedocs.io/en/latest/asab/application.html#>`_ .

	pipelineaddress of a pipeline
	Name of a Pipeline.

	idstr, default None
	Name of a the Pipeline.

	configcompatible config type , default None
	Option for adding a configuration file.

	
async Source.process(event, context=None)

	This method is used to emit event into a Pipeline.

Parameters

	event: Data with time stamp stored in any data type, usually JSON.
	Message or information that is passed to the method and emitted into a Pipeline.

	contextdefault None
	Additional information.

If there is an error in the processing of the event, the Pipeline is throttled by setting the error and the exception raised.

:hint The source should catch this exception and fail gracefully.

	
Source.start(loop)

	Starts the Pipeline through the _main method, but if main method is implemented
it starts the coroutine using main method instead.

Parameters

	loop?
	Contains the coroutines.

	
async Source.stop()

	Stops the Source using self.Task. If the processes are not done it cancels them or raises an error.

	
Source.restart(loop)

	Restarts the loop of coroutines and returns result() method.

Parameters

	loop??
	Contains the coroutines.

	
async Source.main()

	Can be implemented for additional features, else will raise NotImplementedError and _main is called instead.

	
async Source.stopped()

	Waits for all asynchronous tasks to be completed. It is helper that simplifies the implementation of sources.

Example:

..code:: python

async def main(self):

#… initialize resources here

await self.stopped()

#… finalize resources here

	
Source.locate_address()

	Locates address of a Pipeline.

	Returns

	ID and ID of a Pipeline as a string.

	
classmethod Source.construct(app, pipeline, definition: dict)

	Can create a source based on a specific definition. For example, a JSON file.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	pipelinePipeline
	Specification of a Pipeline.

	definitiondict
	Definition that is used to create a source.

	Returns

	cls(app, newid, config)

This is an abstract source class intended as a base for implementation of ‘cyclic’ sources such as file readers, SQL extractors etc.
You need to provide a trigger class and implement cycle() method.

Trigger source will stop execution, when a Pipeline is cancelled (raises concurrent.futures.CancelledError).
This typically happens when a program wants to quit in reaction to a on the signal.

You also may overload the main() method to provide additional parameters for a cycle() method.

async def main(self):
 async with aiohttp.ClientSession(loop=self.Loop) as session:
 await super().main(session)

async def cycle(self, session):
 session.get(...)

	
class TriggerSource(app, pipeline, id=None, config=None)

	Bases: Source

Description:

	Returns

	

	
__init__(app, pipeline, id=None, config=None)

	Set the initial ID, Pipeline and Task.

Parameters

	appApplication
	Name of an Application <https://asab.readthedocs.io/en/latest/asab/application.html#>`_ .

	pipelineaddress of a pipeline
	Name of a Pipeline.

	idstr, default None
	Name of a the Pipeline.

	configcompatible config type , default None
	Option for adding a configuration file.

	
TriggerSource.time()

	Method used for measuring an accurate time.

	Returns

	App.time()

	Hint

	You can find more information about UTC Time [https://asab.readthedocs.io/en/latest/asab/application.html#utc-time] in the ASAB documentation

	
TriggerSource.on()

	Sets a Trigger which is a method that waits for a given condition.

Parameters

	triggerkeyword of a trigger
	Given condition that.

	Returns

	Trigger.add(trigger)

	
async TriggerSource.main()

	Waits for Pipeline, triggers, and calls exceptions when the source is initiated.

Parameters

*args : ?

**kwags : ?

	
async TriggerSource.cycle()

	Not implemented.

Parameters

*args : ?

**kwags : ?

	
TriggerSource.rest_get()

	Description:

	Returns

	

Processor

The main component of the BSPump architecture is a so called processor.
This object modifies, transforms and enriches events.
Moreover, it is capable of calculating metrics and creating aggregations, detecting anomalies or react to known as well as unknown system behavior patterns.

Processors differ as to their functions and all of them are aligned according to a predefined sequence in pipeline objects.
As regards working with data events, each pipeline has its own unique task.

	
class Processor(app, pipeline, id=None, config=None)

	Bases: ProcessorBase

Inherits from ProcessorBase.

	
__init__(app, pipeline, id=None, config=None)

	Initializes the Parameters

Parameters

	appobject
	Application object.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default=None,
	ID of the class of config.

	configJSON, or other compatible formats, default=None
	Configuration file.

	
Processor.time()

	Accurate representation of a time in the Pipeline.

	Returns

	App.time()

	
classmethod Processor.construct()

	Can construct a processor based on a specific definition. For example, a JSON file.

Parameters

	appApplication
	Name of the Application <https://asab.readthedocs.io/en/latest/asab/application.html#>_.

	pipelinestr
	Name of the Pipeline.

	definitiondict
	Set of instructions based on which processor can be constructed.

	Returns

	cls(app, pipeline, id=newid, config=config)

	
Processor.process()

	Can be implemented to return event based on a given logic.

Parameters

	context :
	Additional information passed to the method.

	eventData with time stamp stored in any data type, usually it is in JSON.
	You can specify an event that is passed to the method.

	
Processor.locate_address()

	Returns an ID of a processor and a Pipeline.

	Returns

	ID of the Pipeline and self.Id.

	
Processor.rest_get()

	Description:

	Returns

	

	
Processor.__repr__()

	Return repr(self).

Sink

Sink object serves as a final event destination within the pipeline given.
Subsequently, the event is dispatched/written into the system by the BSPump.

	
class Sink(app, pipeline, id=None, config=None)

	Bases: ProcessorBase

Sink is basically a processor. It takes an event sends it to a database where it is stored.

	
__init__(app, pipeline, id=None, config=None)

	Initializes the Parameters

Parameters

	appobject
	Application object.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default=None,
	ID of the class of config.

	configJSON, or other compatible formats, default=None
	Configuration file.

Connection

	
class Connection(app, id=None, config=None)

	Bases: ABC, Configurable

Connection class is responsible for creating a connection between items or services within the infrastructure of BSPump.
Their main use is to create connection with the main components of BSPump: source, processor and sink.

	
__init__(app, id=None, config=None)

	Description:

Parameters

	appApplication
	Specification of an Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

id : default None

	configJSON or other compatible format, default None
	It contains important information and data responsible for creating a connection.

Connection construction

	
Connection.time()

	Returns accurate time of the asynchronous process.

	Hint

	More information in the ASAB documentation in UTC Time [https://asab.readthedocs.io/en/latest/asab/application.html#utc-time].

Top Level Objects

	BSPumpApplication

	BSPumpService

BSPumpApplication

	
class BSPumpApplication(*args, **kwargs)

	Bases: Application

BSPumpApplication is responsible for the main life cycle of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#]. It is based on ASAB Application [https://asab.readthedocs.io/en/latest/asab/application.html#] class

	
BSPumpApplication.__init__()

	Initiates the Application and looks for config with additional arguments.

Parameters

args : default= None

web_listen : default= None

BSPumpApplication Construction

	
BSPumpApplication.create_argument_parser()

	Enables to create arguments that can be called within the command prompt when starting the application

	Returns

	parser

	
BSPumpApplication.parse_arguments(args=None)

	Parses argument in the ASAB Application [https://asab.readthedocs.io/en/latest/asab/application.html#] using super() method.

Parameters

args : default= None

	Returns

	args

	
async BSPumpApplication.main()

	Prints a message about how many pipelines are ready.

BSPumpService

	
class BSPumpService(app, service_name='bspump.PumpService')

	Bases: Service

Service registry based on Service object. Read more in ASAB documentation `Service <https://asab.readthedocs.io/en/latest/asab/service.html`_.

	
BSPumpService.__init__()

	Initializes parameters passed to the Service class.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html].

	service_namestr, Service name
	string variable containing “”bspump.PumpService

BSPumpService Methods

	
BSPumpService.locate(address)

	locates pipeline, source or processor based on the adressed parameter

Parameters

	addressstr, ID
	Address of an pipeline component.

	
BSPumpService.add_pipeline(pipeline)

	Adds a pipeline to the BSPump.

Parameters

	pipelinePipeline
	Name of the Pipeline.

	
BSPumpService.add_pipelines(*pipelines)

	Adds a pipelines the BSPump.

Parameters

	*pipelineslist
	List of pipelines that are add to the BSPump.

	
BSPumpService.del_pipeline(pipeline)

	Deletes a pipeline from a list of Pipelines.

**Parameters*

	pipelinestr, ID
	ID of a pipeline.

	
BSPumpService.add_connection(connection)

	Adds a connection to the Connection dictionary.

Parameters

	connectionstr, ID
	ID of a connection.

	Returns

	connection

	
BSPumpService.add_connections(*connections)

	Adds a connections to the Connection dictionary.

Parameters

	*connectionstr, ID
	list of IDs of a connections.

	
BSPumpService.locate_connection(connection_id)

	Locates connection based on connection ID.

Parameters

	connection_idID
	Connection ID.

	
BSPumpService.add_lookup(lookup)

	Sets a lookup based on Lookup.

Parameters

	lookupLookup
	Name of the Lookup.

	Returns

	lookup

	
BSPumpService.add_lookups(*lookups)

	Adds a list of lookups to the Pipeline.

Parameters

	lookupLookup
	List of Lookups.

	
BSPumpService.locate_lookup(lookup_id, context=None)

	Locates lookup based on ID.

Parameters

	lookup_idID
	ID of a Lookup.

	context,default = None
	Additional information.

	Returns

	lookup from the lookup service or form the internal dictionary.

	
BSPumpService.add_lookup_factory(lookup_factory)

	Adds a lookup factory

Parameters

	lookup_factory :
	Name of lookup factory.

	
BSPumpService.add_matrix(matrix)

	Adds a matrix to the Pipeline.

Parameters

	matrixMatrix
	Name of Matrix.

	Returns

	matrix

	
BSPumpService.add_matrixes(*matrixes)

	Adds a list of Matrices to the Pipeline.

Parameters

	*matrixeslist
	List of matrices.

	
BSPumpService.locate_matrix(matrix_id)

	Locates a matrix based on matrix ID

Parameters

	matrix_idstr, ID
	ID of a matrix.

	
async BSPumpService.initialize(app)

	Initializes an Application based on ASAB Application [https://asab.readthedocs.io/en/latest/asab/application.html]

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html]

	
async BSPumpService.finalize(app)

	Stops all the pipelines

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html]

Common

	Aggregator
	Aggregation Strategy

	List Aggregation Strategy

	String Aggregation Strategy

	Aggregator

	Bytes
	String to Bytes Parser

	Bytes To String Parser

	Flatten
	Flatten Dict Processor

	Hexlify
	Hexlify Processor

	Iterator
	Hexlify Processor

	Hexlify Processor

	Json
	CySimd Json Parser

	Std Dict To Json Parser

	Std Json To Dict Parser

	Dict To JsonBytes Parser

	Mapping
	Mapping Keys Processor

	Mapping Values Processor

	Mapping Items Processor

	Mapping Keys Generator

	Null
	Null Sink

	Print
	Print Sink

	PPrint Sink

	Print Processor

	PPrint Processor

	Print Context Processor

	PPrint Context Processor

	Routing
	Direct Source

	Internal Source

	Router Mix In

	Router Sink

	Router Processor

	Tee
	Tee Source Processor

	Tee Processor

	Time
	Time Zone Normalizer

	Transfr
	Mapping Transformator

Aggregator

Aggregation Strategy

	
class AggregationStrategy

	Bases: ABC

Aggregation Strategy

	
AggregationStrategy.__init__()

	

Aggregation Strategy Methods

	
abstract AggregationStrategy.append(context, event)

	Appends

Parameters

context :

event :

	
abstract AggregationStrategy.flush()

	Flushes

	
abstract AggregationStrategy.is_empty() → bool

	Description:

List Aggregation Strategy

	
class ListAggregationStrategy

	Bases: AggregationStrategy

Description: … test

	
ListAggregationStrategy.__init__()

	Description:

List Aggregation Strategy Methods

	
ListAggregationStrategy.append(context, event)

	Description:

Parameters

context :

event :

	
ListAggregationStrategy.flush()

	Description:

	Returns

	result

	
ListAggregationStrategy.is_empty() → bool

	Description:

	Returns

	Aggregated Event

String Aggregation Strategy

	
class StringAggregationStrategy(delimiter='\n')

	Bases: AggregationStrategy

Description:

	
StringAggregationStrategy.__init__()

	Description:

String Aggregation Strategy Methods

	
StringAggregationStrategy.append(context, event)

	Description:

Parameters

context :

	eventData with time stamp stored in any data type usually is in JSON.
	You can specify an event that is passed to the method.

	
StringAggregationStrategy.flush()

	Description:

	Returns

	result

	
StringAggregationStrategy.is_empty() → bool

	Description:

	Returns

	Aggregated event

Aggregator

	
class Aggregator(app, pipeline, aggregation_strategy: ~bspump.common.aggregator.AggregationStrategy = <bspump.common.aggregator.ListAggregationStrategy object>, id=None, config=None)

	Bases: Generator

Description:

	
Aggregator.__init__()

	Description:

Aggregator

	
Aggregator.flush()

	Description:

	Returns

	??

	
Aggregator.process(context, event)

	Description:

Parameters

context :

event :

	
async Aggregator.generate(context, aggregated_event, depth)

	Description:

Parameters

context :

aggregated_event :

depth :

Bytes

String to Bytes Parser

	
class StringToBytesParser(app, pipeline, id=None, config=None)

	Bases: Processor

Description:

** Default Config **

encoding : utf-8

	
StringToBytesParser.__init__()

	Description:

String To Bytes Parser Method

	
StringToBytesParser.process(context, event)

	Description:

	Returns

	event.decode(self.Encoding)

Bytes To String Parser

	
class BytesToStringParser(app, pipeline, id=None, config=None)

	Bases: Processor

Description:

	
BytesToStringParser.__init__()

	Description:

Bytes To String Parser Method

	
BytesToStringParser.process(context, event)

	Description:

	Returns

	event.decode(self.Encoding)

Flatten

Flatten Dict Processor

	
class FlattenDictProcessor(app, pipeline, id=None, config=None)

	Bases: Processor

Description: ….

Inspired by https://github.com/amirziai/flatten

Example:

	“person”: {
	
	“details”: {
	“first_name”: “John”,
“last_name”: “Doe”

},
“address”: {

“country”: “GB”,
“city”: “London”,
“postal_code”: “WC2N 5DU”

}

}

Gets converted to:

	{
	“person.details.first_name”: “John”,
“person.details.last_name”: “Doe”,
“person.address.country”: “GB”,
“person.address.city”: “London”,
“person.address.postal_code”: “WC2N 5DU”

}

..automethod:: bspump.common.FlattenDictProcessor.__init__()

Flatten Dict Processor

	
FlattenDictProcessor.flatten(nested_dict)

	Description:

	Returns

	flattened_dict

	
FlattenDictProcessor.process(context, event)

	Description:

	Returns

	event

Hexlify

Hexlify Processor

	
class HexlifyProcessor(app, pipeline, id=None, config=None)

	Bases: Processor

Description:

Hexlify Processor Method

	
HexlifyProcessor.process(context, event)

	Description:

	Returns

	binascii.hexlify(event)

Iterator

Hexlify Processor

	
class IteratorSource(app, pipeline, iterator: Iterator, id=None, config=None)

	Bases: TriggerSource

Description:

	
IteratorSource.__init__()

	Description:

Hexlify Processor Method

	
async IteratorSource.cycle(*args, **kwags)

	Description:

Hexlify Processor

	
class IteratorGenerator(app, pipeline, id=None, config=None)

	Bases: Generator

Description:

	
IteratorGenerator.__init__()

	Description:

Parameters

	appApplication
	Name of the Application.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default = None
	ID

	configJSON, defualt = None
	configuration file containing additional information.

Iterator Generator Method

	
async IteratorGenerator.generate(context, event, depth)

	Description:

Json

CySimd Json Parser

	
class CySimdJsonParser(app, pipeline, id=None, config=None)

	Bases: Processor

Fast JSON parser. Expects json bytes represented as bytes as input
Based on https://github.com/TeskaLabs/cysimdjson

	
CySimdJsonParser.__init__()

	Description: .

CySimd Json Parser Method

	
CySimdJsonParser.process(context, event: bytes)

	Description:

	Returns

	self._parser.parse(event)

Std Dict To Json Parser

	
class StdDictToJsonParser(app, pipeline, id=None, config=None)

	Bases: Processor

Description:

Std Dict To Json Parser Method

	
StdDictToJsonParser.process(context, event)

	Description:

	Returns

	?

Std Json To Dict Parser

	
class StdJsonToDictParser(app, pipeline, id=None, config=None)

	Bases: Processor

Description:

Std Json To Dict Parser Method

	
StdJsonToDictParser.process(context, event)

	Description:

	Returns

	???

Dict To JsonBytes Parser

	
class DictToJsonBytesParser(app, pipeline, id=None, config=None)

	Bases: Processor

DictToJsonBytesParser transforms a dictionary to JSON-string encoded in bytes.
The encoding charset can be specified in the configuration in encoding field.

	
DictToJsonBytesParser.__init__()

	Initializes the Parameters

Parameters

	appobject
	Application object.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default=None,
	ID of the class of config.

	configJSON, or other compatible formats, default=None
	Configuration file.

Dict To Json Bytes Parser Method

	
DictToJsonBytesParser.process(context, event)

	Can be implemented to return event based on a given logic.

Parameters

	context :
	Additional information passed to the method.

	eventData with time stamp stored in any data type, usually it is in JSON.
	You can specify an event that is passed to the method.

Mapping

Mapping Keys Processor

	
class MappingKeysProcessor(app, pipeline, id=None, config=None)

	Bases: Processor

Description: Mapping Keys Processor

Mapping Keys Processor Method

	
MappingKeysProcessor.process(context, event: Mapping) → list

	Description: process is a method of a Mapping Keys Processor

	Returns

	event.keys()

Mapping Values Processor

	
class MappingValuesProcessor(app, pipeline, id=None, config=None)

	Bases: Processor

Description:

Mapping Values Processor Method

	
MappingValuesProcessor.process(context, event: Mapping) → list

	Description:

	Returns

	event.values()

Mapping Items Processor

	
class MappingItemsProcessor(app, pipeline, id=None, config=None)

	Bases: Processor

Description:

Mapping Items Processor Method

	
MappingItemsProcessor.process(context, event: Mapping) → list

	Description:

	Returns

	event.items()

Mapping Keys Generator

	
class MappingKeysGenerator(app, pipeline, id=None, config=None)

	Bases: Generator

Description:

Mapping Keys Generator Method

	
async MappingKeysGenerator.generate(context, event, depth)

	Description:

Null

Null Sink

	
class NullSink(app, pipeline, id=None, config=None)

	Bases: Sink

Description:

Null Sink Method

	
NullSink.process(context, event)

	Description:

Print

Print Sink

	
class PrintSink(app, pipeline, id=None, config=None, stream=None)

	Bases: Sink

Description:

	
__init__(app, pipeline, id=None, config=None, stream=None)

	Description:

Print Sink Method

	
PrintSink.process(context, event)

	Description:

PPrint Sink

	
class PPrintSink(app, pipeline, id=None, config=None, stream=None)

	Bases: Sink

Description:

	
__init__(app, pipeline, id=None, config=None, stream=None)

	Description:

PPrint Sink Method

	
PPrintSink.process(context, event)

	Description:

Print Processor

	
class PrintProcessor(app, pipeline, id=None, config=None, stream=None)

	Bases: Processor

Description:

	
__init__(app, pipeline, id=None, config=None, stream=None)

	Description:

Print Processor Method

	
PrintProcessor.process(context, event)

	Description:

	Returns

	event

PPrint Processor

	
class PPrintProcessor(app, pipeline, id=None, config=None, stream=None)

	Bases: Processor

Description:

	
__init__(app, pipeline, id=None, config=None, stream=None)

	Description:

PPrint Processor Method

	
PPrintProcessor.process(context, event)

	Description:

	Returns

	event

Print Context Processor

	
class PrintContextProcessor(app, pipeline, id=None, config=None, stream=None)

	Bases: Processor

Description:

	
__init__(app, pipeline, id=None, config=None, stream=None)

	Description:

Print Context Processor Method

	
PrintContextProcessor.process(context, event)

	Description:

	Returns

	event

PPrint Context Processor

	
class PPrintContextProcessor(app, pipeline, id=None, config=None, stream=None)

	Bases: Processor

Description:

	
__init__(app, pipeline, id=None, config=None, stream=None)

	Description:

PPrint Context Processor Method

	
PPrintContextProcessor.process(context, event)

	Description:

	Returns

	event

Routing

Direct Source

	
class DirectSource(app, pipeline, id=None, config=None)

	Bases: Source

Description: This source processes inserted event synchronously.

	
DirectSource.__init__()

	Description:

Direct Source

	
DirectSource.put(context, event, copy_context=False, copy_event=False)

	This method serves to put events into the pipeline and process them right away.

Context can be an empty dictionary if is not provided.

	
async DirectSource.main()

	Description:

Internal Source

	
class InternalSource(app, pipeline, id=None, config=None)

	Bases: Source

Description:

	
InternalSource.__init__()

	Description:

Internal Source methods

	
InternalSource.put(context, event, copy_context=False, copy_event=False)

	Description: Context can be an empty dictionary if is not provided.

If you are getting a asyncio.queues.QueueFull exception,
you likely did not implemented backpressure handling.
The simpliest approach is to use RouterSink / RouterProcessor.

	
async InternalSource.put_async(context, event, copy_context=False, copy_event=False)

	Description: This method allows to put an event into InternalSource asynchronously.
Since a processing in the pipeline is synchronous, this method is useful mainly
for situation, when an event is created outside of the pipeline processing.
It is designed to handle situation when the queue is becoming full.

Context can be an empty dictionary if is not provided.

	
async InternalSource.main()

	Description:

	
InternalSource.rest_get()

	Description:

	Returns

	rest

Router Mix In

	
class RouterMixIn

	Bases: object

Description: Router Mix in a class

	
RouterMixIn.__init__()

	

Router Mix In methods

	
RouterMixIn.locate(source_id)

	Description:

	Returns

	source

	
RouterMixIn.unlocate(source_id)

	Description: Undo locate() call, it means that it removes the source from a cache + remove throttling binds

	Returns

	??

	
RouterMixIn.dispatch(context, event, source_id, copy_event=True)

	Description:

	Returns

	self.route(context, event, source_id, copy_event=True)

	
RouterMixIn.route(context, event, source_id, copy_event=True)

	Description: This method routes an event to a InternalSource source_id.

It can be called multiple times from a process() method, which results in a cloning of the event.

Router Sink

	
class RouterSink(app, pipeline, id=None, config=None)

	Bases: Sink, RouterMixIn

Description: Abstract Sink that dispatches events to other internal sources.
One should override the process() method and call route() with target source id.

	
RouterSink.__init__()

	Initializes the Parameters

Parameters

	appobject
	Application object.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default=None,
	ID of the class of config.

	configJSON, or other compatible formats, default=None
	Configuration file.

Router Processor

	
class RouterProcessor(app, pipeline, id=None, config=None)

	Bases: Processor, RouterMixIn

Description: Abstract Processor that dispatches events to other internal sources.
One should override the process() method and call route() with target source id.

	
RouterProcessor.__init__()

	Description:

Tee

Tee Source Processor

	
class TeeSource(app, pipeline, id=None, config=None)

	Bases: InternalSource

Description:

class SamplePipeline(bspump.Pipeline):

	def __init__(self, app, pipeline_id):
	super().__init__(app, pipeline_id)

	self.build(
	bspump.socket.TCPStreamSource(app, self, config={‘port’: 7000}),
bspump.common.TeeProcessor(app, self).bind(“SampleTeePipeline.*TeeSource”),
bspump.common.PPrintSink(app, self)

)

class SampleTeePipeline(bspump.Pipeline):

	def __init__(self, app, pipeline_id):
	super().__init__(app, pipeline_id)

	self.build(
	bspump.common.TeeSource(app, self),
bspump.common.PPrintSink(app, self)

)

	
TeeSource.__init__()

	Description:

Tee Source Method

	
TeeSource.bind(target)

	Description:

	Returns

	

	
async TeeSource.main()

	Description:

	Returns

	

Tee Processor

	
class TeeProcessor(app, pipeline, id=None, config=None)

	Bases: RouterProcessor

Description: See TeeSource for details.

	
TeeProcessor.__init__()

	Description:

Tee Processor Method

	
TeeProcessor.bind(target: str)

	Description: Target is a bspump.PumpService.locate() string

	Returns

	?

	
TeeProcessor.unbind(target: str)

	Description:

	Returns

	?

	
TeeProcessor.process(context, event)

	Description:

	Returns

	event

Time

Time Zone Normalizer

	
class TimeZoneNormalizer(app, pipeline, id=None, config=None)

	Bases: Processor

Description: Normalizes datetime from local timezone (e.g. in config) to UTC, which is preferred internal datetime form

	
TimeZoneNormalizer.__init__()

	Description:

Time Zone Normalizer Method

	
TimeZoneNormalizer.normalize(local_time: datetime) → datetime

	Description: If local_time doesn’t contain a time zone (e.g. it is naive), the timezone will be added from config

	Returns

	Normalized local_time in UTC

	
TimeZoneNormalizer.process(context, event)

	Description: Abstract method to process the event. Must be customized.

Example:

>>> native_time = event["@timestamp"]
>>> local_time = self.normalize(native_time)
>>> event["@timestamp"] = local_time

Transfr

Mapping Transformator

	
class MappingTransformator(app, pipeline, id=None, config=None)

	Bases: Processor

Description:

	
MappingTransformator.__init__()

	Description:

Mapping Transformator Methods

	
MappingTransformator.build(app)

	Description:

	
MappingTransformator.process(context, event: Mapping) → dict

	Description:

	Returns

	dict(map(self._map, event.items()))

Advanced

BitSwan Pump provides more advanced Processors that can be used in a pipeline

Generator

	Generator object is used to generate one or multiple events in asynchronous way
	and pass them to following processors in the pipeline.
In the case of Generator, user overrides generate method, not process.

1.) Generator can iterate through an event to create (generate) derived ones and pass them to following processors.

Example of a custom Generator class with generate method:

 class MyGenerator(bspump.Generator):

 async def generate(self, context, event, depth):
 for item in event.items():
 self.Pipeline.inject(context, item, depth)

2.) Generator can in the same way also generate completely independent events, if necessary.
In this way, the generator processes originally synchronous events "out-of-band" e.g. out of the synchronous processing within the pipeline.

Specific implementation of the generator should implement the generate method to process events while performing
long running (asynchronous) tasks such as HTTP requests or SQL select.
The long running tasks may enrich events with relevant information, such as output of external calculations.

Example of generate method:

async def generate(self, context, event, depth):

 # Perform possibly long-running asynchronous operation
 async with aiohttp.ClientSession() as session:
 async with session.get("https://example.com/resolve_color/{}".format(event.get("color_id", "unknown"))) as resp:
 if resp.status != 200:
 return
 new_event = await resp.json()

 # Inject a new event into a next depth of the pipeline
 self.Pipeline.inject(context, new_event, depth)

	
class Generator(app, pipeline, id=None, config=None)

	Bases: ProcessorBase

Description:

	
Generator.__init__()

	Description:

Parameters

	appApplication
	Name of the Application.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default = None
	ID

	configJSON, defualt = None
	configuration file containing additional information.

Generator Construction

	
Generator.set_depth(depth)

	Description:

Parameters

depth : int

	
Generator.process(context, event)

	Description:

Parameters

context :

	eventany data type
	information of any data type with timestamp.

	
async Generator.generate(context, event, depth)

	Description:

Parameters

context :

	eventany data type
	information of any data type with timestamp.

depth : int

Analyzer

	This is general analyzer interface, which can be the basement of different analyzers.
	analyze_on_clock enables analyzis by timer, which period can be set by analyze_period or
Config[“analyze_period”].

In general, the Analyzer contains some object, where it accumulates some information about events.
Events go through analyzer unchanged, the information is recorded by evaluate() function.
The internal object sometimes should be processed and sent somewhere (e.g. another pipeline),
this process can be done by analyze() function, which can be triggered by time, pubsub or externally

	
class Analyzer(app, pipeline, analyze_on_clock=False, id=None, config=None)

	Bases: Processor

Description:

	
Analyzer.__init__()

	Initializes the Parameters

Parameters

	appobject
	Application object.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default=None,
	ID of the class of config.

	configJSON, or other compatible formats, default=None
	Configuration file.

Analyzer Construction

	
Analyzer.start_timer(event_type)

	Description:

Analyzer

The main function, which runs through the analyzed object. Specific for each analyzer.
If the analyzed object is Matrix, it is not recommended to iterate through the matrix row by row (or cell by cell).
Instead use numpy fuctions. Examples:
1. You have a vector with n rows. You need only those row indeces, where the cell content is more than 10. Use np.where(vector > 10).
2. You have a matrix with n rows and m columns. You need to find out which rows
fully consist of zeros. use np.where(np.all(matrix == 0, axis=1)) to get those row indexes.
Instead np.all() you can use np.any() to get all row indexes, where there is at least one zero.
3. Use np.mean(matrix, axis=1) to get means for all rows.
4. Usefull numpy functions: np.unique(), np.sum(), np.argmin(), np.argmax().

	
Analyzer.analyze()

	Description:

	
Analyzer.evaluate(context, event)

	
	The function which records the information from the event into the analyzed object.
	Specific for each analyzer.

Parameters

context :

	eventany data type
	information with timestamp.

	
Analyzer.predicate(context, event)

	This function is meant to check, if the event is worth to process.
If it is, should return True.
specific for each analyzer, but default one always returns True.

Parameters

context :

	eventany data type
	information with timestamp.

	Returns

	True

	
Analyzer.process(context, event)

	
	The event passes through process(context, event) unchanged.
	Meanwhile it is evaluated.

Parameters

context :

	eventany data type
	information with timestamp.

	Returns

	event

	
async Analyzer.on_clock_tick()

	Run analyzis every tick.

Analyzing Source

Lookup

Lookups serve for fast data searching in lists of key-value type. They can subsequently be localized and used
in pipeline objects (processors and the like). Each lookup requires a statically or dynamically created value list.

If the “lazy” parameter in the constructor is set to True, no load method is called and the user is expected
to call it when necessary.

	
class Lookup(app, id=None, config=None, lazy=False)

	Bases: Configurable

Description:

	Returns

	

	
Lookup.__init__()

	Description:

Lookup Construction

	
Lookup.time()

	Description:

	Returns

	time

	
Lookup.ensure_future_update(loop)

	Description:

	Returns

	

	
async Lookup.load() → bool

	Description:

	
Lookup.serialize()

	Description:

	
Lookup.deserialize(data)

	Description:

	
Lookup.is_master()

	Description:

	Returns

	??

MappingLookup

	
class MappingLookup(app, id=None, config=None, lazy=False)

	Bases: Lookup, Mapping

Description:

	
MappingLookup.__init__()

	Description:

Async Lookup Mixin

AsyncLookupMixin makes sure the value from the lookup is obtained asynchronously.
AsyncLookupMixin is to be used for every technology that is external to BSPump,
respective that require a connection to resource server such as SQL etc.

	
class AsyncLookupMixin(app, id=None, config=None, lazy=False)

	Bases: Lookup

Description:

Dictionary Lookup

	
class DictionaryLookup(app, id=None, config=None, lazy=False)

	Bases: MappingLookup

Description:

	
DictionaryLookup.__init__()

	Description:

Dictionary Lookup Methods

	
DictionaryLookup.__getitem__(key)

	

	
DictionaryLookup.__len__()

	

	
DictionaryLookup.serialize()

	Description:

	Returns

	json data

	
DictionaryLookup.deserialize(data)

	Description:

	
DictionaryLookup.rest_get()

	Description:

	Returns

	rest

	
DictionaryLookup.set(dictionary: dict)

	Description:

Lookup Provider

	
class LookupProviderABC(lookup, url, id=None, config=None)

	Bases: ABC, Configurable

Description:

	
LookupProviderABC.__init__()

	Description:

Lookup Provider Methods

	
async LookupProviderABC.load()

	Description:

Lookup BatchProvider ABC

	
class LookupBatchProviderABC(lookup, url, id=None, config=None)

	Bases: LookupProviderABC, ABC

Description:

	
LookupBatchProviderABC.__init__()

	Description:

Anomaly

	
class Anomaly

	Bases: dict

Description: Anomaly is an abstract class to be overriden for a specific anomaly and its type.

	Returns

	

Implement: TYPE, on_tick

	
Anomaly.__init__()

	

Technologies

Technologies Reference Documentation describes the Technologies section.

Table of Contents

	Apache Kafka

	Elastic Search

	Files

	InfluxDB

	IPC and Socket

	FTP

	RabbitMQ / AMQP

Apache Kafka

Connection

	
class KafkaConnection(app, id=None, config=None)

	Bases: Connection

KafkaConnection serves to connect BSPump application with an instance of Apache Kafka messaging system.
It can later be used by processors to consume or provide user-defined messages.

config = {"compression_type": "gzip"}
app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")
svc.add_connection(
 bspump.kafka.KafkaConnection(app, "KafkaConnection", config)
)

ConfigDefaults options:

	compression_type (str): Kafka supports several compression types: gzip, snappy and lz4.
	This option needs to be specified in Kafka Producer only, Consumer will decompress automatically.

	security_protocol (str): Protocol used to communicate with brokers.
	Valid values are: PLAINTEXT, SSL. Default: PLAINTEXT.

	sasl_mechanism (str): Authentication mechanism when security_protocol
	is configured for SASL_PLAINTEXT or SASL_SSL. Valid values are:
PLAIN, GSSAPI, SCRAM-SHA-256, SCRAM-SHA-512. Default: PLAIN

	sasl_plain_username (str): username for sasl PLAIN authentication.
	Default: None

	sasl_plain_password (str): password for sasl PLAIN authentication.
	Default: None

	
KafkaConnection.__init__()

	initializes variables

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	id, default = None
	ID information.

	configJSON or txt, default= None
	Configuration file of any supported type.

connection Methods

	
async KafkaConnection.create_producer(**kwargs)

	Creates a Producer.

Parameters

	**kwargs :
	Additional information can be passed to this method.

	Returns

	producer

	
KafkaConnection.create_consumer(*topics, **kwargs)

	Creates a consumer.

Parameters

	*topics :
	any number of topics can be passed to this method.

	**kwargs :
	additional information can be passed to this method.

	Returns

	consumer

	
KafkaConnection.get_bootstrap_servers()

	Returns parsed bootstrap servers found in config.

	Returns

	list of url

	
KafkaConnection.get_compression()

	Returns compression type to use in connection

	Returns

	compression_type

Source

	
class KafkaSource(app, pipeline, connection, id=None, config=None)

	Bases: Source

KafkaSource object consumes messages from an Apache Kafka system, which is configured in the KafkaConnection object.
It then passes them to other processors in the pipeline.

class KafkaPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 bspump.kafka.KafkaSource(app, self, "KafkaConnection", config={'topic': 'messages'}),
 bspump.kafka.KafkaSink(app, self, "KafkaConnection", config={'topic': 'messages2'}),
)

To ensure that after restart, pump will continue receiving messages where it left of, group_id has to
be provided in the configuration.

When the group_id is set, the consumer group is created and the Kafka server will then operate
in the producer-consumer mode. It means that every consumer with the same group_id will be assigned
unique set of partitions, hence all messages will be divided among them and thus unique.

Long-running synchronous operations should be avoided or places inside the OOBGenerator in the asynchronous
way or on thread using ASAB Proactor service (see bspump-oob-proactor.py example in "examples" folder).
Otherwise, the session_timeout_ms should be raised to prevent Kafka from disconnecting the consumer
from the partition, thus causing rebalance.

	
KafkaSource.__init__()

	Initializes parameters.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	pipelinePipeline
	Name of the Pipeline.

	connectionConnection
	information needed to create a connection.

id : , default = None

config : , default = None

Source Methods

	
KafkaSource.create_consumer()

	Creates a consumer.

	
async KafkaSource.initialize_consumer()

	Creates a consumer after the loop is started.

	
async KafkaSource.main()

	Method that starts the Source.

Sink

	
class KafkaSink(app, pipeline, connection, key_serializer=None, id=None, config=None)

	Bases: Sink

Description: KafkaSink is a sink processor that forwards the event to a Apache Kafka specified by a KafkaConnection object.

KafkaSink expects bytes as an input. If the input is string or dictionary, it is automatically transformed to bytes
using encoding charset specified in the configuration.

class KafkaPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 bspump.kafka.KafkaSource(app, self, "KafkaConnection", config={'topic': 'messages'}),
 bspump.kafka.KafkaSink(app, self, "KafkaConnection", config={'topic': 'messages2'}),
)

There are two ways to use KafkaSink:
- Specify a single topic in KafkaSink config - topic, to be used for all the events in pipeline.
- Specify topic separetly for each event in event context - context['kafka_topic'].
 Topic from configuration is than used as a default topic.
 To provide business logic for event distribution, you can create topic selector processor.
Processor example:

class KafkaTopicSelector(bspump.Processor):

 def process(self, context, event):
 if event.get("weight") > 10:
 context["kafka_topic"] = "heavy"
 else:
 context["kafka_topic"] = "light"

 return event

Every kafka message can be a key:value pair. Key is read from event context - context['kafka_key'].
If kafka_key is not provided, key defaults to None.

	
KafkaSink.__init__()

	Initilizes the parameters that are passed to the Sink class.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	pipelinePipeline
	Name of the Pipeline.

	connectionConnection
	information needed to create a connection.

key_serializer : , default = None

id : , default = None

config : , default = None

Sink Methods

	
KafkaSink.process(context, event: Union[dict, str, bytes])

	Outputs events to a chosen location.

Parameters

	contexttype
	Additional information.

event:typing.Union[dict, str, bytes] :

Key Filter Kafka

	
class KafkaKeyFilter(app, pipeline, keys, id=None, config=None)

	Bases: Processor

KafkaKeyFilter reduces the incoming event stream from Kafka based on a
key provided in each event.

Every Kafka message has a key, KafkaKeyFilter selects only those events where
the event key matches one of provided ‘keys’, other events will be discarded.

Set filtering keys as a parameter (in bytes) in the KafkaKeyFilter constructor.

KafkaKeyFilter is meant to be inserted after KafkaSource in a Pipeline.

	
KafkaKeyFilter.__init__()

	Initializes variables

Parameters

	appApplication
	Name of the `Application <https://asab.readthedocs.io/en/latest/asab/application.html`_.

	pipelinePipeline
	Name of the Pipeline.

	keysbytes
	keys used to filter out events from the event stream.

id : , default = None

	configJSON, default = None
	configuration file in JSON

	
KafkaKeyFilter.process(context, event)

	Does the filtering processed based on passed key variable.

Parameters

	contextContext
	additional information passed to the method

event : any type,a single unit of information that flows through the Pipeline.

Batch Sink

	
class KafkaBatchSink(app, pipeline, connection, key_serializer=None, id=None, config=None)

	Bases: KafkaSink

KafkaBatchSink is a sink processor that forwards the event to
an Apache Kafka specified by a KafkaConnection object in batches.

It is a proof of concept sink, that allows faster processing of events in the pipeline,
but does not guarantee processing of all events in situations when the pump is closed etc.

There is a work to be done with cooperation with aiokafka, so the send_and_wait method works
properly and is able to send events in batches.

	
KafkaBatchSink.__init__()

	Initializing parameters passed to the BatchSink class.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	pipelinePipeline
	Name of the Pipeline.

	connectionConnection
	Information needed to creates connection.

key_serializer : ,default None

id : , default = None

	configJSON, default = None
	Configuration file with additional information.

Batch Sink Methods

	
KafkaBatchSink.process(context, event: Union[dict, str, bytes])

	Starts the sink process.

Parameters

	contexttype?
	Additional information.

event: typing.Union[dict, str, bytes] : type?

Topic Initializer

	
class KafkaTopicInitializer(app, connection, id: Optional[str] = None, config: Optional[dict] = None)

	Bases: Configurable

KafkaTopicInitializer reads topic configs from file or from Kafka sink/source configs,
checks if they exists and creates them if they don’t.

KafkaAdminClient requires blocking connection, which is why this class doesn’t use
the connection module from BSPump.

Usage:
topic_initializer = KafkaTopicInitializer(app, “KafkaConnection”)
topic_initializer.include_topics(MyPipeline)
topic_initializer.initialize_topics()

	
KafkaTopicInitializer.__init__()

	Initializes the parameters passed to the class.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	connectionConnection
	Information needed to create a connection.

id: typing.Optional[str] = None :

	config: dict = NoneJSON
	configuration file containing important information.

topic initializer methods

	
KafkaTopicInitializer.include_topics(*, topic_config=None, kafka_component=None, pipeline=None, config_file=None)

	Includes topic from config file or dict object. It can also scan Pipeline and get topics from Source or Sink.

Parameters

	:

	topic_config, default= None
	Topic config file.

kafka_component : , default= None

	pipeline, default= None
	Name of the Pipeline.

	config_file, default= None
	Configuration file.

	
KafkaTopicInitializer.include_topics_from_file(topics_file: str)

	Includes topics from a topic file.

Parameters

	topics_file:strstr
	Name of a topic file we wanted to include.

	
KafkaTopicInitializer.include_topics_from_config(config_object)

	Includes topics using a config

Parameters

	config_objectJSON
	config object containing information about what topics we want to include.

	
KafkaTopicInitializer.fetch_existing_topics()

	???

	
KafkaTopicInitializer.check_and_initialize()

	Initializes new topics and logs a warning.

	
KafkaTopicInitializer.initialize_topics()

	Initializes topics ??

Elastic Search

Elastic Search is a Analytics and full-text search engine. Commonly used for Application Performance Management [https://en.wikipedia.org/wiki/Application_performance_management] mainly Analysis of Logs.

Source

ElasticSearchSource is using standard Elastic’s search API to fetch data.

configs

index - Elastic’s index (default is ‘index-*’).

scroll_timeout - Timeout of single scroll request (default is ‘1m’). Allowed time units:
https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units

specific pamameters

paging - boolean (default is True)

request_body - dictionary described by Elastic’s doc:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html

Default is:

default_request_body = {
 'query': {
 'bool': {
 'must': {
 'match_all': {}
 }
 }
 },
}

	
class ElasticSearchSource(app, pipeline, connection, request_body=None, paging=True, id=None, config=None)

	Bases: TriggerSource

Description:

	
ElasticSearchSource.__init__()

	Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html].

	pipelinePipeline
	Name of the Pipeline.

	connectionConnection
	Information of the connection.

	request_body JSON, default = None
	Request body needed for the request API call.

paging : ?, default = True

	idID, default = None
	ID

	configJSON/dict, default = None
	Configuration file with additional information.

Source Methods

	
async ElasticSearchSource.cycle()

	Gets data from Elastic and injects them into the pipeline.

ElasticSearch Aggs Source

ElasticSearchAggsSource is used for Elastic’s search aggregations.

configs

index: - Elastic’s index (default is ‘index-*’).

specific pamameters

request_body
dictionary described by Elastic’s doc:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html

Default is:

default_request_body = {
 'query': {
 'bool': {
 'must': {
 'match_all': {}
 }
 }
 },
}

	
class ElasticSearchAggsSource(app, pipeline, connection, request_body=None, id=None, config=None)

	Bases: TriggerSource

Description:

	
ElasticSearchAggsSource.__init__()

	Description:

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html].

	pipelinePipeline
	Name of the Pipeline.

	connectionConnection
	Information of the connection.

	request_body JSON, default = None
	Request body needed for the request API call.

	idID, default = None
	ID info

	configJSON/dict, default = None
	configuration file with additional information.

ElasticSearch Aggs Source Methods

	
async ElasticSearchAggsSource.cycle()

	Sets request body and path to create query call.

	
async ElasticSearchAggsSource.process_aggs(path, aggs_name, aggs)

	Description:

Parameters

path :

aggs_name :

agss :

	
async ElasticSearchAggsSource.process_buckets(path, parent, buckets)

	Recursive function for buckets processing.
It iterates through keys of the dictionary, looking for ‘buckets’ or ‘value’.
If there are ‘buckets’, calls itself, if there is ‘value’, calls process_aggs
and sends an event to process

Parameters

path :

parent :

buckets :

ElasticSearch Connection

ElasticSearchConnection allows your ES source, sink or lookup to connect to ElasticSearch instance

usage:

adding connection to PumpService
svc = app.get_service("bspump.PumpService")
svc.add_connection(
 bspump.elasticsearch.ElasticSearchConnection(app, "ESConnection")
)

pass connection name ("ESConnection" in our example) to relevant BSPump's object:

self.build(
 bspump.kafka.KafkaSource(app, self, "KafkaConnection"),
 bspump.elasticsearch.ElasticSearchSink(app, self, "ESConnection")
)

	
class ElasticSearchConnection(app, id=None, config=None)

	Bases: Connection

Description:

Sample Config

	url‘’http’://{ip/localhost}:{port}’
	URL of the source. Could be multi-URL. Each URL should be separated by ‘;’ to a node in ElasticSearch cluster.

	username‘string’ , default = ‘ ‘
	Used when authentication is required

	password‘string’, default = ‘ ‘
	Used when authentication is required

	loader_per_urlint, default = 4
	Number of parallel loaders per URL.

	output_queue_max_sizeint, default = 10
	Maximum queue size.

	bulk_out_max_size? * ? * ?, default = 12 * 1024 * 1024
	??

	timeoutint, default = 300
	Timout value.

	fail_log_max_sizeint, default = 20
	Maximum size of failed log messages.

	precise_error_handlingbool, default = False
	If True all Errors will be logged, If false soft errors will be omitted in the Logs.

	
ElasticSearchConnection.__init__()

	Description:

Parameters

	appApplication
	Name of the Application

	idID, default= None
	ID

	configJSON or dict, default= None
	configuration file with additional information for the methods.

ElasticSearch Connection Methods

	
ElasticSearchConnection.get_url()

	
	Returns

	list of URLS of nodes connected to the cluster

	
ElasticSearchConnection.get_session()

	Returns current Client Session Authentication and Loop

	Returns

	aiohttp.ClientSession(auth=self._auth, loop=self.Loop)

	
ElasticSearchConnection.consume(index, data_feeder_generator, bulk_class=<class 'bspump.elasticsearch.connection.ElasticSearchBulk'>)

	Checks the content of data_feeder_generator and bulk and if There is data to be send it calls enqueue method.

Parameters

index :

data_feeder_generator :

	bulk_class=ElasticSearchBulk :
	creates a instance of the ElasticSearchBulk class

	
ElasticSearchConnection.flush(forced=False)

	It goes through the list of bulks and calls enqueue for each of them.

Parameters

forced : bool, default = False

	
ElasticSearchConnection.enqueue(bulk)

	Properly enqueue the bulk.

Parameters

bulk :

Elastic Search Bulk

	
class ElasticSearchBulk(connection, index, max_size)

	Bases: object

Description:

	
ElasticSearchBulk.__init__()

	Initializes the variables

Parameters

	connectionConnection
	Name of the Connection.

	indexstr
	???

	max_sizeint
	Maximal size of bulks.

Elastic Search Bulk Methods

	
ElasticSearchBulk.consume(data_feeder_generator)

	Appends all items in data_feeder_generator to Items list. Consumer also resets Aging and Capacity.

Parameters

	data_feeder_generatorlist
	list of our data that will be passed to a generator and later Uploaded to ElasticSearch.

	Returns

	self.Capacity <= 0

	
async ElasticSearchBulk.upload(url, session, timeout)

	Uploads data to Elastic Search.

Parameters

	urlstring
	Uses URL from config to connect to ElasticSearch Rest API.

	session?
	?

	timeoutint
	uses timout value from config. Value of time for how long we want to be connected to ElasticSearch.

	Returns

	?

	
ElasticSearchBulk.partial_error_callback(response_items)

	Description: When an upload to ElasticSearch fails for error items (document could not be inserted),
this callback is called.

Parameters

response_items :

	Parameters

	response_items – list with dict items: {“index”: {“_id”: …, “error”: …}}

	
ElasticSearchBulk.full_error_callback(bulk_items, return_code)

	Description: When an upload to ElasticSearch fails b/c of ElasticSearch error,
this callback is called.

Parameters

	bulk_itemslist
	list with tuple items: (_id, data)

	return_code :
	ElasticSearch return code

	Returns

	False if the bulk is to be resumbitted again

Lookup

	
class ElasticSearchLookup(app, connection, id=None, config=None, cache=None, lazy=False)

	Bases: MappingLookup, AsyncLookupMixin

The lookup that is linked with a ES.
It provides a mapping (dictionary-like) interface to pipelines.
It feeds lookup data from ES using a query.
It also has a simple cache to reduce a number of database hits.

configs

index - Elastic’s index

key - field name to match

scroll_timeout - Timeout of single scroll request (default is ‘1m’). Allowed time units:
https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units

Example:

The ElasticSearchLookup can be then located and used inside a custom enricher:

 class AsyncEnricher(bspump.Generator):

 def __init__(self, app, pipeline, id=None, config=None):
 super().__init__(app, pipeline, id, config)
 svc = app.get_service("bspump.PumpService")
 self.Lookup = svc.locate_lookup("MySQLLookup")

 async def generate(self, context, event, depth):
 if 'user' not in event:
 return None

 info = await self.Lookup.get(event['user'])

 # Inject a new event into a next depth of the pipeline
 self.Pipeline.inject(context, event, depth)

	
ElasticSearchLookup.__init__()

	Description:

Parameters

	appApplication
	Name of the Application.

	connectionConnection
	Name of the Connection

	idID, default= None
	ID

	configJSON, default= None
	Configuration file with additional information.

cache : ?,default= None

lazy : ?, default= None

Lookup methods

	
async ElasticSearchLookup.get(key)

	Obtain the value from lookup asynchronously.

Parameters

key : ?

	Returns

	value

	
ElasticSearchLookup.build_find_one_query(key) → dict

	Override this method to build your own lookup query

Parameters

key : ?

	Returns

	Default single-key query

	
async ElasticSearchLookup.load()

	Sets the length of Cache to Count.

	Returns

	True

	
classmethod ElasticSearchLookup.construct(app, definition: dict)

	Constructs config, id, and connection based on config.

Parameters

	appApplication
	Name of the Application.

	definition:dictDefinition
	Definition containing information about certain variables.

	Returns

	cls(app, newid, connection, config)

Sink

	
class ElasticSearchSink(app, pipeline, connection, id=None, config=None, bulk_class=<class 'bspump.elasticsearch.connection.ElasticSearchBulk'>, data_feeder=<function data_feeder_create_or_index>)

	Bases: Sink

ElasticSearchSink allows you to insert events into ElasticSearch through POST requests

The following attributes can be passed to the context and thus override the default behavior
of the sink:

es_index (STRING): ElasticSearch index name

data_feeder accepts the event as its only parameter and yields data as Python generator
The example implementation is:

	def data_feeder_create_or_index(event):
	_id = event.pop(“_id”, None)

	if _id is None:
	yield b’{“create”:{}}

	‘
	

	else:
	
	yield orjson.dumps(
	{“index”: {“_id”: _id}}, option=orjson.OPT_APPEND_NEWLINE

)

yield orjson.dumps(event, option=orjson.OPT_APPEND_NEWLINE)

	
ElasticSearchSink.__init__()

	Description:

Parameters

	appApplication
	Name of the Application

	pipelinePipeline
	Name of the Pipeline

	connectionConnection
	Name of the Connection

	idID, default= None
	ID

	configJSON, default= None
	Configuration file with additional information.

bulk_class=ElasticBulk :

data_feeder=data_feeder_create_or_index :

Sink methods

	
ElasticSearchSink.process(context, event)

	Description:

Parameters

context :

	eventany data type
	Information with timestamp.

Data Feeder Methods

	
data_feeder.data_feeder_create_or_index()

	Creates an index.

Parameters

	eventData with time stamp stored in any data type usually is in JSON.
	You can specify an event that is passed to the method.

	
data_feeder.data_feeder_create()

	Creates a data feeder.

Parameters

	eventData with time stamp stored in any data type usually is in JSON.
	You can specify an event that is passed to the method.

	
data_feeder.data_feeder_index()

	Description:

Parameters

	eventData with time stamp stored in any data type usually is in JSON.
	You can specify an event that is passed to the method.

	
data_feeder.data_feeder_update()

	Updates data feeder.

Parameters

	eventData with time stamp stored in any data type usually is in JSON.
	You can specify an event that is passed to the method.

	
data_feeder.data_feeder_delete()

	Deletes data feeder.

Parameters

	eventData with time stamp stored in any data type usually is in JSON.
	You can specify an event that is passed to the method.

Files

File ABC Source

	
class FileABCSource(app, pipeline, id=None, config=None)

	Bases: TriggerSource

Description:

	
FileABCSource.__init__()

	Description:

Parameters

	appApplication
	Name of the Application.

	pipelinePipeline
	Name of the Pipeline.

	idID, default = None
	ID

	configJSON, default = None
	Configuration file with additional information.

File ABC Source Methods

	
async FileABCSource.cycle()

	Cycles through a file.

	
async FileABCSource.simulate_event()

	The simulate_event method should be called in read method after a file line has been processed.

It ensures that all other asynchronous events receive enough time to perform their tasks.
Otherwise, the application loop is blocked by a file reader and no other activity makes a progress.

	
async FileABCSource.read(filename, f)

	Description: Override this method to implement your File Source.
f is an opened file object.

Parameters

	filenamefile
	Name of the file.

f :

File Block Source

	
class FileBlockSource(app, pipeline, id=None, config=None)

	Bases: FileABCSource

Description:

	
FileBlockSource.__init__()

	Description:

Parameters

	appApplication
	Name of the Application.

	pipelinePipeline
	Name of the Pipeline.

	idID, default = None
	ID

	configJSON, default = None
	Configuration file with additional information.

	
async FileBlockSource.read(filename, f)

	Loads a file.

Parameters

	filenamefile
	Name of the file.

f :

File Block Sink

	
class FileBlockSink(app, pipeline, id=None, config=None)

	Bases: Sink

Description:

** Config Defaults **

path : ‘’

mode : wb

flags : O_CREAT

	
FileBlockSink.__init__()

	Parameters

	appApplication
	Name of the Application

	pipelinePipeline
	Name of the Pipeline.

	idID, default = None
	ID

	configJSON, default = None
	Configuration file with additional information.

	
FileBlockSink.get_file_name(context, event)

	Override this method to gain control over output file name.

Parameters

context :

	eventany type
	a single unit of information that is propagated through the pipeline

	Returns

	config path

	
FileBlockSink.process(context, event)

	Opens a file.

Parameters

context :

	eventany type
	a single unit of information that is propagated through the pipeline

File csv Source

	
class FileCSVSource(app, pipeline, fieldnames=None, id=None, config=None)

	Bases: FileABCSource

Description:

	
FileCSVSource.__init__()

	Description:

Parameters

	appApplication
	Name of the Application.

	pipelinePipeline
	Name of the Pipeline.

	idID, default = None
	ID

	configJSON, default = None
	Configuration file with additional information.

	
FileCSVSource.reader(f)

	Description:

Parameters

f :

	Returns

	??

	
async FileCSVSource.read(filename, f)

	Description:

Parameters

filename :

f :

File csv Sink

	
class FileCSVSink(app, pipeline, id=None, config=None)

	Bases: Sink

Description:

** Default Config**

path : ‘’

dialect : ‘excel’

delimiter : ‘,’

doublequote : True

escapechar : “”

lineterminator : os.linesep

quotechar : ‘”’

quoting : csv.QUOTE_MINIMAL

skipinitialspace : False

strict : False

	
FileCSVSink.__init__()

	Description:

	
FileCSVSink.get_file_name(context, event)

	Description: Override this method to gain control over output file name.

Parameters

context :

event :

	Returns

	path of context and config

	
FileCSVSink.writer(f, fieldnames)

	Description:

Parameters

f :

	fieldnamesfile
	Name of the file.

	Returns

	dialect and fieldnames

	
FileCSVSink.process(context, event)

	Description:

Parameters

context :

	eventany data type
	Information with timestamp.

	
FileCSVSink.rotate()

	Description: Call this to close the currently open file.

File json Source

	
class FileJSONSource(app, pipeline, id=None, config=None)

	Bases: FileABCSource

Description: This file source is optimized to load even large JSONs from a file and parse that.
The loading & parsing is off-loaded to the worker thread so that it doesn’t block the IO loop.

	
FileJSONSource.__init__()

	Description:

Parameters

app :

pipeline :

	idID, default= None
	ID

	configJSON, default = None
	configuration file with additional information

	
async FileJSONSource.read(filename, f)

	Description:

Parameters

filename :

f :

File line Source

	
class FileLineSource(app, pipeline, id=None, config=None)

	Bases: FileABCSource

Description:

	
FileLineSource.__init__()

	Description:

Parameters

	app: Application
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html]

	pipelinePipeline
	Name of the Pipeline

id : ID, default = None

	configJSON, default = None
	Configuration file with additional information

	
async FileLineSource.read(filename, f)

	Description:

Parameters

filename :

f :

File Multiline Source

	
class FileMultiLineSource(app, pipeline, separator, id=None, config=None)

	Bases: FileABCSource

Description: Read file line by line but try to join multi-line events by separator.
Separator is a (fixed) pattern that should present at the begin of the line, if it is a new event.

Example:
<133>1 2018-03-24T02:37:01+00:00 machine program 22068 - Start of the multiline event

2nd line of the event
3rd line of the event

<133>1 2018-03-24T02:37:01+00:00 machine program 22068 - New event

The separatpr is ‘<’ string in this case

	
FileMultiLineSource.__init__()

	Description:

Parameters

	app: Application
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html]

	pipelinePipeline
	Name of the Pipeline

separator :

id : ID, default = None

	configJSON, default = None
	Configuration file with additional information

	
async FileMultiLineSource.read(filename, f)

	Description:

Parameters

filename :

f :

Lookup Provider

	
class FileBatchLookupProvider(lookup, url, id=None, config=None)

	Bases: LookupBatchProviderABC

Loads lookup data from a file on local filesystem.

	
FileBatchLookupProvider.__init__()

	Description:

	
async FileBatchLookupProvider.load()

	Description:

	Returns

	result

	
FileBatchLookupProvider.load_on_thread()

	Description:

InfluxDB

Connection

	
class InfluxDBConnection(app, id=None, config=None)

	Bases: Connection

Description: InfluxDBConnection serves to connect BSPump application with an InfluxDB database.
The InfluxDB server is accessed via URL, and the database is specified
using the db parameter in the configuration.

app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")
svc.add_connection(
 bspump.influxdb.InfluxDBConnection(app, "InfluxConnection1")
)

Config Default

url : http://localhost:8086/

db : mydb

output_queue_max_size : 10

output_bucket_max_size : 1000 * 1000

timout : 30

retry_enabled : False

response_codes_to_retry : 404, 502, 503, 504

	
InfluxDBConnection.__init__()

	Description:

Parameters

	appApplication
	Name of the Application.

id : ID, default = None

	configJSON, default = None
	Configuration file with additional information.

Sink

	
class InfluxDBSink(app, pipeline, connection, id=None, config=None)

	Bases: Sink

Description: InfluxDBSink is a sink processor, that stores the event into an InfluxDB database
specified in the InfluxDBConnection object.

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 bspump.socket.TCPStreamSource(app, self, config={'port': 7000}),
 bspump.influxdb.InfluxDBSink(app, self, "InfluxConnection1")
)

	
InfluxDBSink.__init__()

	Description:

Parameters

app :

pipeline :

connection :

id : ID, default = None

config : str,JSON, default = None

	
InfluxDBSink.process(context, event)

	Description:

Parameters

context :

	eventany data type
	Information with timestamp.

IPC and Socket

Datagram

	
class DatagramSource(app, pipeline, id=None, config=None)

	Bases: Source

Description:

	
DatagramSource.__init__()

	Description:

	
async DatagramSource.main()

	Description:

Datagram sink

	
class DatagramSink(app, pipeline, id=None, config=None)

	Bases: Sink

Description:

	
DatagramSink.__init__()

	Description:

	
DatagramSink.process(context, event)

	Description:

Protocol

	
class SourceProtocolABC(app, pipeline, config)

	Bases: object

Source protocol is a handler class, that basically gets the socket (in reader)
and extract the payload from it in a way that is conformant to expected protocol.

That is happening in the handle() method.
The output is to be shipped to source.process() method.

	
SourceProtocolABC.__init__()

	Description:

	
async SourceProtocolABC.handle(source, stream, context)

	Description:

Line Source Protocol

	
class LineSourceProtocol(app, pipeline, config)

	Bases: SourceProtocolABC

Description: Basically readline() for reading lines from a socket.

	
LineSourceProtocol.__init__()

	Description:

	
async LineSourceProtocol.handle(source, stream, context)

	Description:

Stream

	
class Stream(loop, socket, outbound_queue=None)

	Bases: object

Description: This object represent a client connection.
It is unencrypted STREAM socket.

	
Stream.__init__()

	

	
async Stream.recv_into(buf)

	

	
Stream.send(data)

	

	
async Stream.outbound()

	Handle outbound direction

	
async Stream.close()

	

TLS Stream

	
class TLSStream(loop, sslcontext, socket, server_side: bool)

	Bases: object

Description: This object represent a TLS client connection.
It is encrypted SSL/TLS socket abstraction.

	
TLSStream.__init__()

	Description:

	
async TLSStream.recv_into(buf)

	Description:

	
TLSStream.send(data)

	Description:

	
async TLSStream.outbound()

	Handle outbound direction

	
async TLSStream.close()

	Description:

Steam Server Source

	
class StreamServerSource(app, pipeline, id=None, config=None, protocol_class=<class 'bspump.ipc.protocol.LineSourceProtocol'>)

	Bases: Source

Description:

	
StreamServerSource.__init__()

	Description:

	
StreamServerSource.start(loop)

	Description:

	
async StreamServerSource.stop()

	Description:

	
async StreamServerSource.main()

	Description:

Stream Client Sink

	
class StreamClientSink(app, pipeline, id=None, config=None)

	Bases: Sink

Description:

	
StreamClientSink.__init__()

	Description:

	
StreamClientSink.process(context, event)

	Description:

FTP

connection

source

RabbitMQ / AMQP

Source

	
class AMQPSource(app, pipeline, connection, id=None, config=None)

	Bases: Source

Description:

	
AMQPSource.__init__()

	Set the initial ID, Pipeline and Task.

Parameters

	appApplication
	Name of an Application <https://asab.readthedocs.io/en/latest/asab/application.html#>`_ .

	pipelineaddress of a pipeline
	Name of a Pipeline.

	idstr, default None
	Name of a the Pipeline.

	configcompatible config type , default None
	Option for adding a configuration file.

	
async AMQPSource.main()

	Description:

	
async AMQPSource.process_message(method, properties, body)

	Description:

	
classmethod AMQPSource.construct(app, pipeline, definition: dict)

	Description:

AMQP Full Message Source

	
class AMQPFullMessageSource(app, pipeline, connection, id=None, config=None)

	Bases: AMQPSource

Description:

	
AMQPFullMessageSource.process_message(method, properties, body)

	Description:

Sink

	
class AMQPSink(app, pipeline, connection, id=None, config=None)

	Bases: Sink

	
AMQPSink.__init__()

	Initializes the Parameters

Parameters

	appobject
	Application object.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default=None,
	ID of the class of config.

	configJSON, or other compatible formats, default=None
	Configuration file.

	
AMQPSink.process(context, event)

	Can be implemented to return event based on a given logic.

Parameters

	context :
	Additional information passed to the method.

	eventData with time stamp stored in any data type, usually it is in JSON.
	You can specify an event that is passed to the method.

Connection

	
class AMQPConnection(app, id=None, config=None)

	Bases: Connection

	
AMQPConnection.__init__()

	Description:

Parameters

	appApplication
	Specification of an Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

id : default None

	configJSON or other compatible format, default None
	It contains important information and data responsible for creating a connection.

 Python Module Index

 b

 		 	

 		
 b	

 	
 	
 bspump	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__contains__() (Lookup method)

 	__getitem__() (DictionaryLookup method), [1]

 	(Lookup method)

 	__init__() (AggregationStrategy method)

 	(Aggregator method)

 	(AMQPConnection method)

 	(AMQPSink method)

 	(AMQPSource method)

 	(Analyzer method), [1]

 	(Anomaly method), [1]

 	(BSPumpApplication method)

 	(BSPumpService method)

 	(BytesToStringParser method)

 	(Connection method)

 	(CySimdJsonParser method)

 	(DatagramSink method)

 	(DatagramSource method)

 	(DictionaryLookup method), [1]

 	(DictToJsonBytesParser method)

 	(DirectSource method)

 	(ElasticSearchAggsSource method)

 	(ElasticSearchBulk method)

 	(ElasticSearchConnection method)

 	(ElasticSearchLookup method)

 	(ElasticSearchSink method)

 	(ElasticSearchSource method)

 	(FileABCSource method)

 	(FileBatchLookupProvider method)

 	(FileBlockSink method)

 	(FileBlockSource method)

 	(FileCSVSink method)

 	(FileCSVSource method)

 	(FileJSONSource method)

 	(FileLineSource method)

 	(FileMultiLineSource method)

 	(Generator method), [1]

 	(InfluxDBConnection method)

 	(InfluxDBSink method)

 	(InternalSource method)

 	(IteratorGenerator method)

 	(IteratorSource method)

 	(KafkaBatchSink method), [1]

 	(KafkaConnection method), [1]

 	(KafkaKeyFilter method), [1]

 	(KafkaSink method), [1]

 	(KafkaSource method), [1]

 	(KafkaTopicInitializer method), [1]

 	(LineSourceProtocol method)

 	(ListAggregationStrategy method)

 	(Lookup method), [1]

 	(LookupBatchProviderABC method), [1]

 	(LookupProviderABC method), [1]

 	(MappingLookup method), [1]

 	(MappingTransformator method)

 	(PPrintContextProcessor method)

 	(PPrintProcessor method)

 	(PPrintSink method)

 	(PrintContextProcessor method)

 	(PrintProcessor method)

 	(PrintSink method)

 	(Processor method)

 	(RouterMixIn method)

 	(RouterProcessor method)

 	(RouterSink method)

 	(Sink method)

 	(Source method), [1]

 	(SourceProtocolABC method)

 	(Stream method)

 	(StreamClientSink method)

 	(StreamServerSource method)

 	(StringAggregationStrategy method)

 	(StringToBytesParser method)

 	(TeeProcessor method)

 	(TeeSource method)

 	(TimeZoneNormalizer method)

 	(TLSStream method)

 	(TriggerSource method)

 	
 	__iter__() (Lookup method)

 	__len__() (DictionaryLookup method), [1]

 	(Lookup method)

 	__repr__() (Processor method)

 	_commit() (KafkaSource method)

 	_connection() (KafkaBatchSink method)

 	(KafkaSink method)

 	_create_provider() (Lookup method)

 	_do_update() (Lookup method)

 	_get_bootstrap_servers() (KafkaTopicInitializer method)

 	_not_ready_handler() (KafkaSource method)

 	_on_application_stop() (KafkaSink method)

 	_on_health_check() (KafkaSink method)

 	_simulate_event() (KafkaSource method)

A

 	
 	add_connection() (BSPumpService method)

 	add_connections() (BSPumpService method)

 	add_lookup() (BSPumpService method)

 	add_lookup_factory() (BSPumpService method)

 	add_lookups() (BSPumpService method)

 	add_matrix() (BSPumpService method)

 	add_matrixes() (BSPumpService method)

 	add_pipeline() (BSPumpService method)

 	add_pipelines() (BSPumpService method)

 	AggregationStrategy (class in bspump.common.aggregator)

 	Aggregator (class in bspump.common)

 	
 	AMQPConnection (class in bspump.amqp.connection)

 	AMQPFullMessageSource (class in bspump.amqp.source)

 	AMQPSink (class in bspump.amqp.sink)

 	AMQPSource (class in bspump.amqp.source)

 	analyze() (Analyzer method), [1]

 	Analyzer (class in bspump), [1]

 	Anomaly (class in bspump), [1]

 	append() (AggregationStrategy method)

 	(ListAggregationStrategy method)

 	(StringAggregationStrategy method)

 	append_processor() (Pipeline method)

 	AsyncLookupMixin (class in bspump.abc.lookup), [1]

B

 	
 	bind() (TeeProcessor method)

 	(TeeSource method)

 	
 bspump

 	module

 	BSPumpApplication (class in bspump)

 	
 	BSPumpService (class in bspump)

 	build() (MappingTransformator method)

 	(Pipeline method), [1]

 	build_find_one_query() (ElasticSearchLookup method)

 	BytesToStringParser (class in bspump.common)

C

 	
 	check_and_initialize() (KafkaTopicInitializer method), [1]

 	close() (Stream method)

 	(TLSStream method)

 	Connection (class in bspump)

 	construct() (AMQPSource class method)

 	(ElasticSearchLookup class method)

 	(Processor class method)

 	(Source class method)

 	consume() (ElasticSearchBulk method)

 	(ElasticSearchConnection method)

 	
 	create_argument_parser() (BSPumpApplication method)

 	create_consumer() (KafkaConnection method), [1]

 	(KafkaSource method), [1]

 	create_eps_counter() (Pipeline method)

 	create_producer() (KafkaConnection method), [1]

 	cycle() (ElasticSearchAggsSource method)

 	(ElasticSearchSource method)

 	(FileABCSource method)

 	(IteratorSource method)

 	(TriggerSource method)

 	CySimdJsonParser (class in bspump.common)

D

 	
 	data_feeder_create() (data_feeder method)

 	data_feeder_create_or_index() (data_feeder method)

 	data_feeder_delete() (data_feeder method)

 	data_feeder_index() (data_feeder method)

 	data_feeder_update() (data_feeder method)

 	DatagramSink (class in bspump.ipc.datagram)

 	DatagramSource (class in bspump.ipc.datagram)

 	
 	del_pipeline() (BSPumpService method)

 	deserialize() (DictionaryLookup method), [1]

 	(Lookup method), [1]

 	DictionaryLookup (class in bspump.abc.lookup), [1]

 	DictToJsonBytesParser (class in bspump.common)

 	DirectSource (class in bspump.common)

 	dispatch() (RouterMixIn method)

E

 	
 	ElasticSearchAggsSource (class in bspump.elasticsearch)

 	ElasticSearchBulk (class in bspump.elasticsearch.connection)

 	ElasticSearchConnection (class in bspump.elasticsearch)

 	ElasticSearchLookup (class in bspump.elasticsearch)

 	ElasticSearchSink (class in bspump.elasticsearch)

 	
 	ElasticSearchSource (class in bspump.elasticsearch)

 	enqueue() (ElasticSearchConnection method)

 	ensure_future() (Pipeline method)

 	ensure_future_update() (Lookup method), [1]

 	evaluate() (Analyzer method), [1]

F

 	
 	fetch_existing_topics() (KafkaTopicInitializer method), [1]

 	FileABCSource (class in bspump.file.fileabcsource)

 	FileBatchLookupProvider (class in bspump.file.lookupprovider)

 	FileBlockSink (class in bspump.file.fileblocksink)

 	FileBlockSource (class in bspump.file.fileblocksource)

 	FileCSVSink (class in bspump.file.filecsvsink)

 	FileCSVSource (class in bspump.file.filecsvsource)

 	FileJSONSource (class in bspump.file.filejsonsource)

 	FileLineSource (class in bspump.file.filelinesource)

 	
 	FileMultiLineSource (class in bspump.file.filelinesource)

 	finalize() (BSPumpService method)

 	flatten() (FlattenDictProcessor method)

 	FlattenDictProcessor (class in bspump.common)

 	flush() (AggregationStrategy method)

 	(Aggregator method)

 	(ElasticSearchConnection method)

 	(ListAggregationStrategy method)

 	(StringAggregationStrategy method)

 	full_error_callback() (ElasticSearchBulk method)

G

 	
 	generate() (Aggregator method)

 	(Generator method), [1]

 	(IteratorGenerator method)

 	(MappingKeysGenerator method)

 	Generator (class in bspump), [1]

 	get() (ElasticSearchLookup method)

 	
 	get_bootstrap_servers() (KafkaConnection method), [1]

 	get_compression() (KafkaConnection method), [1]

 	get_file_name() (FileBlockSink method)

 	(FileCSVSink method)

 	get_session() (ElasticSearchConnection method)

 	get_throttles() (Pipeline method)

 	get_url() (ElasticSearchConnection method)

H

 	
 	handle() (LineSourceProtocol method)

 	(SourceProtocolABC method)

 	
 	handle_error() (Pipeline method)

 	HexlifyProcessor (class in bspump.common)

I

 	
 	include_topics() (KafkaTopicInitializer method), [1]

 	include_topics_from_config() (KafkaTopicInitializer method), [1]

 	include_topics_from_file() (KafkaTopicInitializer method), [1]

 	InfluxDBConnection (class in bspump.influxdb.connection)

 	InfluxDBSink (class in bspump.influxdb.sink)

 	initialize() (BSPumpService method)

 	initialize_consumer() (KafkaSource method), [1]

 	initialize_topics() (KafkaTopicInitializer method), [1]

 	inject() (Pipeline method)

 	insert_after() (Pipeline method)

 	
 	insert_before() (Pipeline method)

 	InternalSource (class in bspump.common)

 	is_empty() (AggregationStrategy method)

 	(ListAggregationStrategy method)

 	(StringAggregationStrategy method)

 	is_error() (Pipeline method)

 	is_master() (Lookup method), [1]

 	is_ready() (Pipeline method)

 	iter_processors() (Pipeline method), [1]

 	IteratorGenerator (class in bspump.common)

 	IteratorSource (class in bspump.common)

K

 	
 	KafkaBatchSink (class in bspump.kafka.batchsink), [1]

 	KafkaConnection (class in bspump.kafka.connection), [1]

 	KafkaKeyFilter (class in bspump.kafka.keyfilter), [1]

 	
 	KafkaSink (class in bspump.kafka.sink), [1]

 	KafkaSource (class in bspump.kafka.source), [1]

 	KafkaTopicInitializer (class in bspump.kafka.topic_initializer), [1]

L

 	
 	LineSourceProtocol (class in bspump.ipc.protocol)

 	link() (Pipeline method)

 	ListAggregationStrategy (class in bspump.common)

 	load() (ElasticSearchLookup method)

 	(FileBatchLookupProvider method)

 	(Lookup method), [1]

 	(LookupProviderABC method), [1]

 	load_on_thread() (FileBatchLookupProvider method)

 	locate() (BSPumpService method)

 	(RouterMixIn method)

 	
 	locate_address() (Processor method)

 	(Source method)

 	locate_connection() (BSPumpService method)

 	(Pipeline method)

 	locate_lookup() (BSPumpService method)

 	locate_matrix() (BSPumpService method)

 	locate_processor() (Pipeline method)

 	locate_source() (Pipeline method)

 	Lookup (class in bspump), [1]

 	LookupBatchProviderABC (class in bspump.abc.lookupprovider), [1]

 	LookupProviderABC (class in bspump.abc.lookupprovider), [1]

M

 	
 	main() (AMQPSource method)

 	(BSPumpApplication method)

 	(DatagramSource method)

 	(DirectSource method)

 	(InternalSource method)

 	(KafkaSource method), [1]

 	(Source method)

 	(StreamServerSource method)

 	(TeeSource method)

 	(TriggerSource method)

 	
 	MappingItemsProcessor (class in bspump.common)

 	MappingKeysGenerator (class in bspump.common)

 	MappingKeysProcessor (class in bspump.common)

 	MappingLookup (class in bspump), [1]

 	MappingTransformator (class in bspump.common)

 	MappingValuesProcessor (class in bspump.common)

 	
 module

 	bspump

N

 	
 	normalize() (TimeZoneNormalizer method)

 	
 	NullSink (class in bspump.common)

O

 	
 	on() (TriggerSource method)

 	on_clock_tick() (Analyzer method), [1]

 	
 	outbound() (Stream method)

 	(TLSStream method)

P

 	
 	parse_arguments() (BSPumpApplication method)

 	partial_error_callback() (ElasticSearchBulk method)

 	Pipeline (class in bspump)

 	PPrintContextProcessor (class in bspump.common)

 	PPrintProcessor (class in bspump.common)

 	PPrintSink (class in bspump.common)

 	predicate() (Analyzer method), [1]

 	PrintContextProcessor (class in bspump.common)

 	PrintProcessor (class in bspump.common)

 	PrintSink (class in bspump.common)

 	process() (Aggregator method)

 	(AMQPSink method)

 	(Analyzer method), [1]

 	(BytesToStringParser method)

 	(CySimdJsonParser method)

 	(DatagramSink method)

 	(DictToJsonBytesParser method)

 	(ElasticSearchSink method)

 	(FileBlockSink method)

 	(FileCSVSink method)

 	(FlattenDictProcessor method)

 	(Generator method), [1]

 	(HexlifyProcessor method)

 	(InfluxDBSink method)

 	(KafkaBatchSink method), [1]

 	(KafkaKeyFilter method), [1]

 	(KafkaSink method), [1]

 	(MappingItemsProcessor method)

 	(MappingKeysProcessor method)

 	(MappingTransformator method)

 	(MappingValuesProcessor method)

 	(NullSink method)

 	(Pipeline method)

 	(PPrintContextProcessor method)

 	(PPrintProcessor method)

 	(PPrintSink method)

 	(PrintContextProcessor method)

 	(PrintProcessor method)

 	(PrintSink method)

 	(Processor method)

 	(Source method)

 	(StdDictToJsonParser method)

 	(StdJsonToDictParser method)

 	(StreamClientSink method)

 	(StringToBytesParser method)

 	(TeeProcessor method)

 	(TimeZoneNormalizer method)

 	
 	process_aggs() (ElasticSearchAggsSource method)

 	process_buckets() (ElasticSearchAggsSource method)

 	process_message() (AMQPFullMessageSource method)

 	(AMQPSource method)

 	Processor (class in bspump)

 	put() (DirectSource method)

 	(InternalSource method)

 	put_async() (InternalSource method)

R

 	
 	read() (FileABCSource method)

 	(FileBlockSource method)

 	(FileCSVSource method)

 	(FileJSONSource method)

 	(FileLineSource method)

 	(FileMultiLineSource method)

 	reader() (FileCSVSource method)

 	ready() (Pipeline method)

 	recv_into() (Stream method)

 	(TLSStream method)

 	remove_processor() (Pipeline method)

 	
 	rest_get() (DictionaryLookup method), [1]

 	(InternalSource method)

 	(Lookup method)

 	(Processor method)

 	(TriggerSource method)

 	restart() (Source method)

 	rotate() (FileCSVSink method)

 	route() (RouterMixIn method)

 	RouterMixIn (class in bspump.common.routing)

 	RouterProcessor (class in bspump.common)

 	RouterSink (class in bspump.common)

S

 	
 	send() (Stream method)

 	(TLSStream method)

 	serialize() (DictionaryLookup method), [1]

 	(Lookup method), [1]

 	set() (DictionaryLookup method), [1]

 	set_depth() (Generator method), [1]

 	set_error() (Pipeline method)

 	set_source() (Pipeline method)

 	simulate_event() (FileABCSource method)

 	Sink (class in bspump)

 	Source (class in bspump.abc.source), [1]

 	SourceProtocolABC (class in bspump.ipc.protocol)

 	start() (Pipeline method)

 	(Source method)

 	(StreamServerSource method)

 	
 	start_timer() (Analyzer method), [1]

 	StdDictToJsonParser (class in bspump.common)

 	StdJsonToDictParser (class in bspump.common)

 	stop() (Pipeline method)

 	(Source method)

 	(StreamServerSource method)

 	stopped() (Source method)

 	Stream (class in bspump.ipc.stream)

 	StreamClientSink (class in bspump.ipc.stream_client_sink)

 	StreamServerSource (class in bspump.ipc.stream_server_source)

 	StringAggregationStrategy (class in bspump.common)

 	StringToBytesParser (class in bspump.common)

T

 	
 	TeeProcessor (class in bspump.common)

 	TeeSource (class in bspump.common)

 	throttle() (Pipeline method)

 	time() (Connection method)

 	(Lookup method), [1]

 	(Pipeline method)

 	(Processor method)

 	(TriggerSource method)

 	
 	TimeZoneNormalizer (class in bspump.common)

 	TLSStream (class in bspump.ipc.stream)

 	TriggerSource (class in bspump)

U

 	
 	unbind() (TeeProcessor method)

 	unlink() (Pipeline method)

 	
 	unlocate() (RouterMixIn method)

 	upload() (ElasticSearchBulk method)

W

 	
 	writer() (FileCSVSink method)

OV05 BS-Testing Configuration Documentation

Basic Pump Template

This is generic pump template you can use for your app.

#!/usr/bin/env python3

import bspump
import bspump.common
import bspump.trigger
import bspump.http
import asab

There is place for your processors

class SamplePipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)

 self.build(
 # Source of data in pipeline triggered every 5 sec you can replace it for your desired source
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 # Processor which convert JSON to Python dictionary
 bspump.common.StdJsonToDictParser(app, self),
 # Sink for printing data to terminal
 bspump.common.PPrintSink(app, self),
)

if __name__ == '__main__':
 app = bspump.BSPumpApplication()

 svc = app.get_service("bspump.PumpService")

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

Blank app structure

It is a good practice to have your app in blank app structure like in this tutorial TODO…

Running your pump with configuration file

When you want to run your pump with configuration you can do it this way

In Terminal

In terminal you have to use -c flag in your command like this

~ python3 nameOfYourPump.py -c nameOfYourConfig.conf

In your IDE

When you want to run your pump in IDE you have to set the run parameters. For example in PyCharm go to Run -> Edit Configurations…
and then change the parameters to -c nameOfYourPump.conf.

[image: IDE Configuration]
More about configuration files is here [https://bitswanpump.readthedocs.io/en/latest/examples/configquickstart/configquickstart.html]

Elastic search connection

Import Elastic Search module from BSPump

import bspump
import bspump.common
import bspump.http
import bspump.elasticsearch
import asab

Add Elastic Search connection to main function:

if __name__ == '__main__':
 app = bspump.BSPumpApplication()

 svc = app.get_service("bspump.PumpService")

 # Adding Elastic Search connection here
 es_connection = bspump.elasticsearch.ElasticSearchConnection(app, "ESConnection")
 svc.add_connection(es_connection)

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

Sink

If you want to upload your data to Elastic Search index create .conf file with following config, change INDEX-NAME to your desired
index and PIPELINE-NAME to name of your pipline:

Elasticsearch connection
[connection:ESConnection]
url=http://10.17.168.197:9200

Elasticsearch sink
[pipeline:PIPELINE-NAME:ElasticSearchSink]
index=INDEX-NAME
doctype=_doc

Then add bspump.elasticsearch.ElasticSearchSink to your pipeline like this:

self.build(
 # Source of data in pipeline triggered every 5 sec you can replace it for your desired source
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 # Processor which convert JSON to Python dictionary
 bspump.common.StdJsonToDictParser(app, self),
 # Sink to upload data to Elastic Search topic
 bspump.elasticsearch.ElasticSearchSink(app, self, "ESConnection"),
)

Source

If you want to get data from Elastic Search topic your .conf file have to looks like this, change INDEX-NAME tou your index
and PIPELINE-NAME to name of your pipeline:

Elasticsearch connection
[connection:ESConnection]
url=http://10.17.168.197:9200

Elasticsearch source
[pipeline:PIPELINE-NAME:ElasticSearchSource]
index=INDEX-NAME

Then add bspump.elasticsearch.ElasticSearchSource with PeriodicTrigger

self.build(
 # Elastic Search source which get data every 5 sec
 bspump.elasticsearch.ElasticSearchSource(app, self, "ESConnection").on(bspump.trigger.PeriodicTrigger(app, 5)),
 # Processor which convert JSON to Python dictionary
 bspump.common.StdJsonToDictParser(app, self),
 # Sink for printing data to terminal
 bspump.common.PPrintSink(app, self),
)

Kibana UI

Kibana is UI for Elastic Search databases and to create dashboards from our stored data. You can access Kibana on bs-testing through
this url https://bs-testing/kibana/app/home#/ you can also browse your data in Index Management, etc.

When you go to that url you should see this page

[image: Kibana Home Page]
You can browse through indexes here [https://bs-testing/kibana/app/management/data/index_management/indices]

[image: Kibana Index Management]
When you want to create your dashboard you have to first make index pattern from your index. You can create index pattern
here [https://bs-testing/kibana/app/management/kibana/indexPatterns]

[image: Kibana Index Patterns]
When you have your index pattern you can create dashboard here [https://bs-testing/kibana/app/dashboards#/create?_g=(filters:!(),refreshInterval:(pause:!t,value:0),time:(from:now-15m,to:now))&_a=(description:'',filters:!(),fullScreenMode:!f,options:(hidePanelTitles:!f,useMargins:!t),panels:!(),query:(language:kuery,query:''),tags:!(),timeRestore:!f,title:'',viewMode:edit)]

[image: Kibana Dashboard]

Kafka Connection

Import Kafka module from BSPump

import bspump
import bspump.common
import bspump.http
import bspump.kafka
import asab

Add Kafka connection to main function:

if __name__ == '__main__':
 app = bspump.BSPumpApplication()

 svc = app.get_service("bspump.PumpService")

 # Adding Kafka connection here
 svc.add_connection(
 bspump.kafka.KafkaConnection(app, "KafkaConnection")
)

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

Sink

If you want to stream your data in Kafka topic create .conf file with following config (change TOPIC-NAME to your topic
and PIPELINE-NAME to name of your pipeline):

[connection:KafkaConnection]
bootstrap_servers=10.17.168.197

Elasticsearch sink
[pipeline:PIPELINE-NAME:KafkaSink]
topic=TOPIC-NAME

Then add bspump.kafka.KafkaSink to your pipeline like this:

self.build(
 # Source of data in pipeline triggered every 5 sec you can replace it for your desired source
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 # Processor which convert JSON to Python dictionary
 bspump.common.StdJsonToDictParser(app, self),
 # Sink to stream data to Kafka topic
 bspump.kafka.KafkaSink(app, self, "KafkaConnection"),
)

Source

If you want to stream data from Kafka topic create .conf file with following config (change TOPIC-NAME and PIPELINE-NAME):

KafkaConnection
[connection:KafkaConnection]
bootstrap_servers=10.17.168.197:9092

Kafka source ACS
[pipeline:PIPELINE-NAME:KafkaSource]
topic=TOPIC-NAME

Add ``bspump.kafka.KafkaSource``to your pipeline:

self.build(
 # Elastic Search source which get data every 5 sec
 bspump.kafka.KafkaSource(app, self, "KafkaConnection"),
 # Processor which convert bytes to string because Kafka stream is in bytes
 bspump.common.BytesToStringParser(app, self),
 # Processor which convert JSON to Python dictionary
 bspump.common.StdJsonToDictParser(app, self),
 # Sink to stream data from Kafka topic
 bspump.common.PPrintSink(app, self),
)

KafkaDrop

KafkaDrop is UI for Kafka. You can manage your topics and see info about brokers here. KafkaDrop is accessible via https://bs-testing/kafka-ui/

You should see this home page

[image: KafkaDrop Home Page]
You can see there are already some topics. When you click on one of them you can show info about topic and its partition.

[image: KafkaDrop Topic Page]
When you want to see which data are stored in topic click on View Messages. Set from which partition you want to view data, offset,
messages limit, key format and message format and click View Messages again.

You should see specific messages in topic and its timestamps

[image: KafkaDrop View Messages]

InfluxDB Connection

First you have to connect to bs-testing server and create database in InfluxDB container. When you are connected on bs-testing type
this command:

root@bs-testing:~ docker exec -it single_lm01-influxdb_1 bash

Now you are in InfluxDB container. To enter the InfluxDB type:

root@72bfd8803691:/ influx

Create new database and insert new measurements

When you are in InfluxDB you can show all your databases with show databases command.

Output:

name: databases
name

db0
_internal
...

To create new database type create database DATABASE-NAME and change DATABASE-NAME with name of your desired database.

Now when you type show databases again you should see this:

name: databases
name

db0
_internal
...
DATABASE-NAME

Now you have to enter your desired database with use DATABASE-NAME command (change DATABASE-NAME with your database).

When you are in your database you can display all your measurements with show measurements command. When your database is empty you will see nothing.

You can insert new measurement with INSERT command, for example:

INSERT cpu,host=serverA value 1

Sink

If you want to insert data to your InfluxDB with your pump you have to add import bspump.influxdb module:

import bspump
import bspump.common
import bspump.http
import bspump.influxdb
import asab

Add InfluxDB Connection to main function of your pump

if __name__ == '__main__':
 app = bspump.BSPumpApplication()

 svc = app.get_service("bspump.PumpService")

 # Adding InfluxDB Connection here
 svc.add_connection(
 bspump.influxdb.InfluxDBConnection(app, "InfluxConnection")
)

 # Construct and register Pipeline
 pl = SamplePipeline(app, 'SamplePipeline')
 svc.add_pipeline(pl)

 app.run()

Now you have to set you .conf file with this configuration (change YOUR-DB-NAME to name of your database):

InfluxDB Connection
[connection:InfluxConnection]
url=http://10.17.168.197:8086
db= YOUR-DB-NAME

Add bspump.influxdb.InfluxDBSink to your pipeline:

self.build(
 bspump.http.HTTPClientSource(app, self, config={
 'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
 }).on(bspump.trigger.PeriodicTrigger(app, 5)),
 # Processor used to print data to terminal
 bspump.common.PPrintProcessor(app, self),
 # Sink which send data to InfluxDB
 bspump.influxdb.InfluxDBSink(app, self, "InfluxConnection")
)

Grafana

Grafana is UI for creating dashboard from a multiple data sources like InfluxDB, Elastic, MySQL ,etc. We will use it for creating dashboard from InfluxDB records.
Grafana is accessible via http://bs-testing:3000

You should see this home page

[image: Grafana Home Page]
First you have to add your data source, which is database where you have your measurements. You can find data sources
here [http://bs-testing:3000/datasources]

[image: Grafana Data Sources]
Click on Add data source option and choose InfluxDB. Define name of your data source, change url of source to http://bs-testing:8086, and
specify name of your database.

[image: Grafana Adding Data Source]
Now you can create dashboard here [http://bs-testing:3000/dashboard/new?orgId=1].

[image: Grafana Panel Creation]

Deployment Overview

	clone gitlab repository to /opt folder

	add 127.0.0.1 bs01 to /etc/hosts.conf

	check if disks on server are hdd or sdd using command

cat /sys/block/sda/queue/rotational

for single disk

or

lsblk -d -o name, rota

for mor disks, but you have to install it using

sudo apt install util-linux

check what disks to use and mount them if needed to create data

create /data/hdd folder and mount it on desired disk partition
mount /var/lib/docker folder on desired disk partition
add mounted folders to /etc/fstab

rewrite the in the config accordingly

change all disks to hdd/sdd in docker-compose.yaml

try running docker compose up

setup password in ElasticSearch docker exec -it bs01-es01 bash

and run command ./bin/elasticsearch-setup-passwords interactive

set up: [password]

to deploy SeaCatAuth you need to generate domain from customer

then generate certifications, private key and CA

add mongoDB to docker compose

add seacatauth to docker compose

ask costumer if they have SMTP server for SeaCat email sender if then haven’t generate api key from TeskaLabs Sendgrid
add provisioning mode to SeacatAuth into docker-compose via this docs https://docs.teskalabs.com/seacat-auth/config/provisioning

add BitSwan UI, Seacat WebUI and Seacat Auth WebUI to /data/hdd/nginx/webroot folder (UIs is on the GitLab)

after UI is ready to use create new superuser in Seacat and disable provisioning mode in docker-compose

to run kibana create global role elk:superuser

to run grafana create global role grafana:grafana_admin

to connect dashboards, sidebar and discover you have to create nodes in zookeper-ui

BSQuery
add service to docker compose
add node to zookeeper-ui /export
implement config
add endpoint to nginx config

ERRORS and how to fix it

	docker compose version is unsupported

check the version of docker compose if needed upgrade it

	from daemon head url image: no basic auth credential

ask Robin for auth

	elastic search ElasticsearchException[failed to bind service]; nested: AccessDeniedException[/usr/share/elasticsearch/data/nodes]

use chown -R elasticsearch data/ inside the container

	make sure that grafana.db is not a folder but a file, if it is folder delete it and restart grafana

Analyzer

	This is general analyzer interface, which can be the basement of different analyzers.
	analyze_on_clock enables analyzis by timer, which period can be set by analyze_period or
Config[“analyze_period”].

In general, the Analyzer contains some object, where it accumulates some information about events.
Events go through analyzer unchanged, the information is recorded by evaluate() function.
The internal object sometimes should be processed and sent somewhere (e.g. another pipeline),
this process can be done by analyze() function, which can be triggered by time, pubsub or externally

	
class Analyzer(app, pipeline, analyze_on_clock=False, id=None, config=None)

	Bases: Processor

Description:

	
__init__(app, pipeline, analyze_on_clock=False, id=None, config=None)

	Initializes the Parameters

Parameters

	appobject
	Application object.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default=None,
	ID of the class of config.

	configJSON, or other compatible formats, default=None
	Configuration file.

Analyzer construction

	
Analyzer.start_timer(event_type)

	Description:

Analyzer

The main function, which runs through the analyzed object. Specific for each analyzer.
If the analyzed object is Matrix, it is not recommended to iterate through the matrix row by row (or cell by cell).
Instead use numpy fuctions. Examples:
1. You have a vector with n rows. You need only those row indeces, where the cell content is more than 10. Use np.where(vector > 10).
2. You have a matrix with n rows and m columns. You need to find out which rows
fully consist of zeros. use np.where(np.all(matrix == 0, axis=1)) to get those row indexes.
Instead np.all() you can use np.any() to get all row indexes, where there is at least one zero.
3. Use np.mean(matrix, axis=1) to get means for all rows.
4. Usefull numpy functions: np.unique(), np.sum(), np.argmin(), np.argmax().

	
Analyzer.analyze()

	Description:

	
Analyzer.evaluate(context, event)

	
	The function which records the information from the event into the analyzed object.
	Specific for each analyzer.

Parameters

context :

	eventany data type
	information with timestamp.

	
Analyzer.predicate(context, event)

	This function is meant to check, if the event is worth to process.
If it is, should return True.
specific for each analyzer, but default one always returns True.

Parameters

context :

	eventany data type
	information with timestamp.

	Returns

	True

	
Analyzer.process(context, event)

	
	The event passes through process(context, event) unchanged.
	Meanwhile it is evaluated.

Parameters

context :

	eventany data type
	information with timestamp.

	Returns

	event

	
async Analyzer.on_clock_tick()

	Run analyzis every tick.

Analyzing source

Anomaly

	
class Anomaly

	Bases: dict

Description: Anomaly is an abstract class to be overriden for a specific anomaly and its type.

	Returns

	

Implement: TYPE, on_tick

	
__init__(*args, **kwargs)

	

Generator

Generator object is used to generate one or multiple events in asynchronous way
and pass them to following processors in the pipeline.

In the case of Generator, user overrides generate method, not process.

1.) Generator can iterate through an event to create (generate) derived ones and pass them to following processors.

Example of a custom Generator class with generate method:

 class MyGenerator(bspump.Generator):

 async def generate(self, context, event, depth):
 for item in event.items():
 self.Pipeline.inject(context, item, depth)

2.) Generator can in the same way also generate completely independent events, if necessary.
In this way, the generator processes originally synchronous events "out-of-band" e.g. out of the synchronous processing within the pipeline.

Specific implementation of the generator should implement the generate method to process events while performing
long running (asynchronous) tasks such as HTTP requests or SQL select.
The long running tasks may enrich events with relevant information, such as output of external calculations.

Example of generate method:

async def generate(self, context, event, depth):

 # Perform possibly long-running asynchronous operation
 async with aiohttp.ClientSession() as session:
 async with session.get("https://example.com/resolve_color/{}".format(event.get("color_id", "unknown"))) as resp:
 if resp.status != 200:
 return
 new_event = await resp.json()

 # Inject a new event into a next depth of the pipeline
 self.Pipeline.inject(context, new_event, depth)

	
class Generator(app, pipeline, id=None, config=None)

	Bases: ProcessorBase

Description:

	
__init__(app, pipeline, id=None, config=None)

	Description:

Parameters

	appApplication
	Name of the Application.

	pipelinePipeline
	Name of the Pipeline.

	idstr, default = None
	ID

	configJSON, defualt = None
	configuration file containing additional information.

Generator construction

	
Generator.set_depth(depth)

	Description:

Parameters

depth : int

	
Generator.process(context, event)

	Description:

Parameters

context :

	eventany data type
	information of any data type with timestamp.

	
async Generator.generate(context, event, depth)

	Description:

Parameters

context :

	eventany data type
	information of any data type with timestamp.

depth : int

Lookup

Lookups serve for fast data searching in lists of key-value type. They can subsequently be localized and used
in pipeline objects (processors and the like). Each lookup requires a statically or dynamically created value list.

If the “lazy” parameter in the constructor is set to True, no load method is called and the user is expected
to call it when necessary.

	
class Lookup(app, id=None, config=None, lazy=False)

	Bases: Configurable

Description:

	Returns

	

	
__init__(app, id=None, config=None, lazy=False)

	Description:

Lookup construction

	
Lookup.__getitem__(key)

	

	
Lookup.__iter__()

	

	
Lookup.__len__()

	

	
Lookup.__contains__(item)

	

	
Lookup._create_provider(path: str)

	Description:

	Returns

	

	
Lookup.time()

	Description:

	Returns

	time

	
Lookup.ensure_future_update(loop)

	Description:

	Returns

	

	
async Lookup._do_update()

	Description:

	Returns

	

	
async Lookup.load() → bool

	Description:

	
Lookup.serialize()

	Description:

	
Lookup.deserialize(data)

	Description:

	
Lookup.rest_get()

	Description:

	Returns

	

	
Lookup.is_master()

	Description:

	Returns

	??

MappingLookup

	
class MappingLookup(app, id=None, config=None, lazy=False)

	Bases: Lookup, Mapping

Description:

	
__init__(app, id=None, config=None, lazy=False)

	Description:

AsyncLookupMixin

AsyncLookupMixin makes sure the value from the lookup is obtained asynchronously.
AsyncLookupMixin is to be used for every technology that is external to BSPump,
respective that require a connection to resource server such as SQL etc.

	
class AsyncLookupMixin(app, id=None, config=None, lazy=False)

	Bases: Lookup

Description:

DictionaryLookup

	
class DictionaryLookup(app, id=None, config=None, lazy=False)

	Bases: MappingLookup

Description:

	
__init__(app, id=None, config=None, lazy=False)

	Description:

Dictionary Lookup methods

	
DictionaryLookup.__getitem__(key)

	

	
DictionaryLookup.__len__()

	

	
DictionaryLookup.serialize()

	Description:

	Returns

	json data

	
DictionaryLookup.deserialize(data)

	Description:

	
DictionaryLookup.rest_get()

	Description:

	Returns

	rest

	
DictionaryLookup.set(dictionary: dict)

	Description:

Lookup Provider

	
class LookupProviderABC(lookup, url, id=None, config=None)

	Bases: ABC, Configurable

Description:

	
__init__(lookup, url, id=None, config=None)

	Description:

Lookup Provider methods

	
async LookupProviderABC.load()

	Description:

LookupBatchProviderABC

	
class LookupBatchProviderABC(lookup, url, id=None, config=None)

	Bases: LookupProviderABC, ABC

Description:

	
__init__(lookup, url, id=None, config=None)

	Description:

IPC

Sockets

CSV

JSON

Plain

batch sink

	
class KafkaBatchSink(app, pipeline, connection, key_serializer=None, id=None, config=None)

	Bases: KafkaSink

KafkaBatchSink is a sink processor that forwards the event to
an Apache Kafka specified by a KafkaConnection object in batches.

It is a proof of concept sink, that allows faster processing of events in the pipeline,
but does not guarantee processing of all events in situations when the pump is closed etc.

There is a work to be done with cooperation with aiokafka, so the send_and_wait method works
properly and is able to send events in batches.

	
__init__(app, pipeline, connection, key_serializer=None, id=None, config=None)

	Initializing parameters passed to the BatchSink class.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	pipelinePipeline
	Name of the Pipeline.

	connectionConnection
	Information needed to creates connection.

key_serializer : ,default None

id : , default = None

	configJSON, default = None
	Configuration file with additional information.

batch sink methods

	
KafkaBatchSink.process(context, event: Union[dict, str, bytes])

	Starts the sink process.

Parameters

	contexttype?
	Additional information.

event: typing.Union[dict, str, bytes] : type?

	
async KafkaBatchSink._connection()

	Description:

	Returns

	

connection

	
class KafkaConnection(app, id=None, config=None)

	Bases: Connection

KafkaConnection serves to connect BSPump application with an instance of Apache Kafka messaging system.
It can later be used by processors to consume or provide user-defined messages.

config = {"compression_type": "gzip"}
app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")
svc.add_connection(
 bspump.kafka.KafkaConnection(app, "KafkaConnection", config)
)

ConfigDefaults options:

	compression_type (str): Kafka supports several compression types: gzip, snappy and lz4.
	This option needs to be specified in Kafka Producer only, Consumer will decompress automatically.

	security_protocol (str): Protocol used to communicate with brokers.
	Valid values are: PLAINTEXT, SSL. Default: PLAINTEXT.

	sasl_mechanism (str): Authentication mechanism when security_protocol
	is configured for SASL_PLAINTEXT or SASL_SSL. Valid values are:
PLAIN, GSSAPI, SCRAM-SHA-256, SCRAM-SHA-512. Default: PLAIN

	sasl_plain_username (str): username for sasl PLAIN authentication.
	Default: None

	sasl_plain_password (str): password for sasl PLAIN authentication.
	Default: None

	
__init__(app, id=None, config=None)

	initializes variables

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	id, default = None
	ID information.

	configJSON or txt, default= None
	Configuration file of any supported type.

connection methods

	
async KafkaConnection.create_producer(**kwargs)

	Creates a Producer.

Parameters

	**kwargs :
	Additional information can be passed to this method.

	Returns

	producer

	
KafkaConnection.create_consumer(*topics, **kwargs)

	Creates a consumer.

Parameters

	*topics :
	any number of topics can be passed to this method.

	**kwargs :
	additional information can be passed to this method.

	Returns

	consumer

	
KafkaConnection.get_bootstrap_servers()

	Returns parsed bootstrap servers found in config.

	Returns

	list of url

	
KafkaConnection.get_compression()

	Returns compression type to use in connection

	Returns

	compression_type

key filter kafka

	
class KafkaKeyFilter(app, pipeline, keys, id=None, config=None)

	Bases: Processor

KafkaKeyFilter reduces the incoming event stream from Kafka based on a
key provided in each event.

Every Kafka message has a key, KafkaKeyFilter selects only those events where
the event key matches one of provided ‘keys’, other events will be discarded.

Set filtering keys as a parameter (in bytes) in the KafkaKeyFilter constructor.

KafkaKeyFilter is meant to be inserted after KafkaSource in a Pipeline.

	
__init__(app, pipeline, keys, id=None, config=None)

	Initializes variables

Parameters

	appApplication
	Name of the `Application <https://asab.readthedocs.io/en/latest/asab/application.html`_.

	pipelinePipeline
	Name of the Pipeline.

	keysbytes
	keys used to filter out events from the event stream.

id : , default = None

	configJSON, default = None
	configuration file in JSON

	
KafkaKeyFilter.process(context, event)

	Does the filtering processed based on passed key variable.

Parameters

	contextContext
	additional information passed to the method

event : any type,a single unit of information that flows through the Pipeline.

lookup kafka

Sink

	
class KafkaSink(app, pipeline, connection, key_serializer=None, id=None, config=None)

	Bases: Sink

Description: KafkaSink is a sink processor that forwards the event to a Apache Kafka specified by a KafkaConnection object.

KafkaSink expects bytes as an input. If the input is string or dictionary, it is automatically transformed to bytes
using encoding charset specified in the configuration.

class KafkaPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 bspump.kafka.KafkaSource(app, self, "KafkaConnection", config={'topic': 'messages'}),
 bspump.kafka.KafkaSink(app, self, "KafkaConnection", config={'topic': 'messages2'}),
)

There are two ways to use KafkaSink:
- Specify a single topic in KafkaSink config - topic, to be used for all the events in pipeline.
- Specify topic separetly for each event in event context - context['kafka_topic'].
 Topic from configuration is than used as a default topic.
 To provide business logic for event distribution, you can create topic selector processor.
Processor example:

class KafkaTopicSelector(bspump.Processor):

 def process(self, context, event):
 if event.get("weight") > 10:
 context["kafka_topic"] = "heavy"
 else:
 context["kafka_topic"] = "light"

 return event

Every kafka message can be a key:value pair. Key is read from event context - context['kafka_key'].
If kafka_key is not provided, key defaults to None.

	
__init__(app, pipeline, connection, key_serializer=None, id=None, config=None)

	Initilizes the parameters that are passed to the Sink class.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	pipelinePipeline
	Name of the Pipeline.

	connectionConnection
	information needed to create a connection.

key_serializer : , default = None

id : , default = None

config : , default = None

Sink methods

	
KafkaSink._on_health_check(message_type)

	Description:

	Returns

	

	
KafkaSink._on_application_stop(message_type, counter)

	Description:

	Returns

	

	
async KafkaSink._connection()

	Description:

	Returns

	

	
KafkaSink.process(context, event: Union[dict, str, bytes])

	Outputs events to a chosen location.

Parameters

	contexttype
	Additional information.

event:typing.Union[dict, str, bytes] :

Source

	
class KafkaSource(app, pipeline, connection, id=None, config=None)

	Bases: Source

KafkaSource object consumes messages from an Apache Kafka system, which is configured in the KafkaConnection object.
It then passes them to other processors in the pipeline.

class KafkaPipeline(bspump.Pipeline):

 def __init__(self, app, pipeline_id):
 super().__init__(app, pipeline_id)
 self.build(
 bspump.kafka.KafkaSource(app, self, "KafkaConnection", config={'topic': 'messages'}),
 bspump.kafka.KafkaSink(app, self, "KafkaConnection", config={'topic': 'messages2'}),
)

To ensure that after restart, pump will continue receiving messages where it left of, group_id has to
be provided in the configuration.

When the group_id is set, the consumer group is created and the Kafka server will then operate
in the producer-consumer mode. It means that every consumer with the same group_id will be assigned
unique set of partitions, hence all messages will be divided among them and thus unique.

Long-running synchronous operations should be avoided or places inside the OOBGenerator in the asynchronous
way or on thread using ASAB Proactor service (see bspump-oob-proactor.py example in "examples" folder).
Otherwise, the session_timeout_ms should be raised to prevent Kafka from disconnecting the consumer
from the partition, thus causing rebalance.

	
__init__(app, pipeline, connection, id=None, config=None)

	Initializes parameters.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	pipelinePipeline
	Name of the Pipeline.

	connectionConnection
	information needed to create a connection.

id : , default = None

config : , default = None

Source methods

	
KafkaSource.create_consumer()

	Creates a consumer.

	
async KafkaSource.initialize_consumer()

	Creates a consumer after the loop is started.

	
async KafkaSource._not_ready_handler(message_type, *args, **kwargs)

	Calls _commit when pipeline is throttled.

Parameters

message_types :

*args :

**kwargs :

	
async KafkaSource.main()

	Method that starts the Source.

	
async KafkaSource._commit(offsets=None)

	Description:

	Returns

	

	
async KafkaSource._simulate_event()

	Description: The _simulate_event method should be called in main method after a message has been processed.

It ensures that all other asynchronous events receive enough time to perform their tasks.
Otherwise, the application loop is blocked by a file reader and no other activity makes a progress.

topic initializer

	
class KafkaTopicInitializer(app, connection, id: Optional[str] = None, config: Optional[dict] = None)

	Bases: Configurable

KafkaTopicInitializer reads topic configs from file or from Kafka sink/source configs,
checks if they exists and creates them if they don’t.

KafkaAdminClient requires blocking connection, which is why this class doesn’t use
the connection module from BSPump.

Usage:
topic_initializer = KafkaTopicInitializer(app, “KafkaConnection”)
topic_initializer.include_topics(MyPipeline)
topic_initializer.initialize_topics()

	
__init__(app, connection, id: Optional[str] = None, config: Optional[dict] = None)

	Initializes the parameters passed to the class.

Parameters

	appApplication
	Name of the Application [https://asab.readthedocs.io/en/latest/asab/application.html#].

	connectionConnection
	Information needed to create a connection.

id: typing.Optional[str] = None :

	config: dict = NoneJSON
	configuration file containing important information.

topic initializer methods

	
KafkaTopicInitializer._get_bootstrap_servers(app, connection)

	

	
KafkaTopicInitializer.include_topics(*, topic_config=None, kafka_component=None, pipeline=None, config_file=None)

	Includes topic from config file or dict object. It can also scan Pipeline and get topics from Source or Sink.

Parameters

	:

	topic_config, default= None
	Topic config file.

kafka_component : , default= None

	pipeline, default= None
	Name of the Pipeline.

	config_file, default= None
	Configuration file.

	
KafkaTopicInitializer.include_topics_from_file(topics_file: str)

	Includes topics from a topic file.

Parameters

	topics_file:strstr
	Name of a topic file we wanted to include.

	
KafkaTopicInitializer.include_topics_from_config(config_object)

	Includes topics using a config

Parameters

	config_objectJSON
	config object containing information about what topics we want to include.

	
KafkaTopicInitializer.fetch_existing_topics()

	???

	
KafkaTopicInitializer.check_and_initialize()

	Initializes new topics and logs a warning.

	
KafkaTopicInitializer.initialize_topics()

	Initializes topics ??

 _images/kafka1.png
Ostar

"
A Kafdrop

Kafka Cluster Overview

= Bootstrap servers bs-testing:9092
£ Total topics 2
@ Total partitions 2
® Total preferred partition leader 100%
< Total under-replicated partitions 9
EBrokers
L30) D Host % Port = Rack ® Controller € Number of partitions (% of total) @
01 bs-testing 9092 - Yes 2(100%)

£ Topics AACLs

Name @ Partitions © % Preferred @ #Under-replicated @ Custom Config
weather-test 1 100%. [No
weather-test2 1 100%. [No

[#new |

_images/kafka2.png
' OQstar
‘A Kafdrop
Topic: weather-test
[ovienvisses | wodope
Overview Configuration
o . No topic-specific configuration
Preferred replicas 100%
Under-replicated partitions (]
Total size 228
Total available messages 228
Partition Detail Consumers
Insyne GroupD Combined Lag
Pt Last Leader Replca Replica Preferred
Offict Offset Sz MNode Nodes Nodes Nodes Leader Underreplcated

o o 28 228 1 1 1 Yes No

_images/grafana3.png
B+ O 0]

a & o 6

it Settings

Name © YOUR-NAME

Query Language

InfluxqL

HTTP
URL
Access
Allowed cookies

Timeout

Auth
Basic auth
TLS Client Auth

Skip TLS Verify

Forward OAuth Identity

Custom HTTP Headers

+ Add header

InfluxDB Details

© http://bs-testing:8086
Server (default)
New tag (enter key to add)

Timeout in seconds

With Credentials

With CA Cert

Default

Help >

o &

Database Access

Setting the database for this datasource does not deny access to other databases. The InfluxDB query syntax allows switching the database in the query. For
example: SHOW MEASUREMENTS ON _internal or SELECT * FROM "_internal’.."database’ LIMIT 10

To support data isolation and security, make sure appropriate permissions are configured in InfluxDB.

Database YOUR-DATABASE-NAME
User

Password Password

HTTP Method © Choose v
Mintimeinteval © 10s

Max series ® 1000

_images/grafana4.png
@ O lLastéhours v+ Q

{3 8 New dashboard i

i+ Add panel

+ D =

Add a new panel Adda new row.

oo
oo

o

Add a panel from the panel ibrary

a @& o 6

_images/kibana2.png
= @ stackManagement

Ingest ®

Ingest Node Pipelines

Data @

Index Management
Index Lifecycle Policies
Snapshot and Restore
Rollup Jobs
Transforms

Remote Clusters

Alerts and Insights @

Alerts and Actions
Reporting

Kibana @

Index Pattems
Saved Objects
Tags

Spaces

Advanced Settings

Stack @

License Management
80 Upgrade Assistant

Index Management

Index Management © Index Management docs

Indices Data Streams Index Templates ~ Component Templates

Update your Elasticsearch indices individually or in bulk. Learn more. & X Include rollup indices X Include hidden indices
Q search Lifecycle status \~ Lifecycle phase C Reload indices
Name Health Status Primaries Replicas Docs count Storage size Data stream

weather-pump-test ® green open 1 1 27 267.8kb

Rows per page: 10 v/

_images/kibana3.png
= @ stackManagement

Ingest ®

Ingest Node Pipelines

Data @

Index Management
Index Lifecycle Policies
Snapshot and Restore
Rollup Jobs
Transforms

Remote Clusters

Alerts and Insights @

Alerts and Actions
Reporting

Kibana @

Index Patterns
Saved Objects
Tags

Spaces

Advanced Settings

Stack @

License Management
80 Upgrade Assistant

Index patterns

You have data in Elasticsearch.
Now, create an index pattern.

Kibana requires an index pattern to identify which indices
you want to explore. An index pattern can point to a
specific index, for example, your log data from yesterday,
or all indices that contain your log data.

) Create index pattern

Want to leam more? Read documentation 2

_images/kafka3.png
Ostar

¢
A Kafdrop

Topic Messages: weather-test
G o (D 228 D 228

ouson Y e T - R <~ R e -))

[orizc:: K empty (TS 2022-02-28 11:02:26.616 (XY empty

© {"coord": {"lon": -0.1257, "lat": 51.5085}, "weather": [{"id": 804, "main": "Clouds", "description": "overcast clouds", "icon": "04d"}],

7 1 [0 empty G 2022-02-28 11:02:26,686 (T empty

© {"coord": {"lon": -74.006, "lat": 40.7143}, "weather": [{"id": 801, "main": "Clouds", "description": "few clouds", "icon": "02n"}], "bas

e 2 empty (TSR 2022-02-28 11:02:26.722 (XY empty

© {"coord" lon": 13.4105, "lat": 52.5244}, "weather": [{"id": 802, "main": "Clouds", "description": "scattered clouds", "icon": "03d"}]
T 3 [empty EITEEET 2022-02-28 11:02:35.493 [empty
© {"coord": lon": -0.1257, "lat": 51.5085}, "weather": [{"id": 804, "main": "Clouds", "description": "overcast clouds", "icon": "@4d"}],
T 4 (2 empty EETEEET 2022-02-28 11:02:35.550 [empty
© {"coord": lon": -74.006, "lat": 40.7143}, "weather": [{"id": 802, "main": "Clouds", "description": "scattered clouds", "icon": "@3n"}]

| e—
G 5 [empty EITEEET 2022-02-28 11:02:35.603 [empty

© {"coord’ lon": 13.4105, "lat": 52.5244}, "weather": [{"id": 802, "main": "Clouds", "description": "scattered clouds", "icon": "03d"}]

R EEEEEEEEE———
[orizc:: K3 empty (T 2022-02-28 11:02:45.491 (¥ empty

© {"coord": {"lon": -0.1257, "lat": 51.5085}, "weather": [{"id": 804, "main": "Clouds", "description": "overcast clouds", "icon": "04d"}],

R EEEEEEEEEE————
e 7 empty (TR 2022-02-28 11:02:45.539 (SR empty

© {"coord": {"lon": -74.006, "lat": 40.7143}, "weather": [{"id": 801, "main": "Clouds", "description": "few clouds", "icon": "02n"}], "bas

| E—
7 & [empty G 20220228 11:02:45.717 (T empty

© {"coord": {"lon": 13.4105, "lat": 52.5244}, "weather": [{"id": 802, "main": "Clouds", "description": "scattered clouds", "icon": "03d"}]

R EEEEEEEEE———
[o:c:: K2 empty (TSR 2022-02-28 11:02:55.524 (XY empty

© {"coord": {"lon": -0.1257, "lat": 51.5085}, "weather": [{"id": 804, "main": "Clouds", "description": "overcast clouds", "icon": "04d"}],

e
G 10 (2B empty 2022-02-28 11:02:55.577 (XIS empty

© {coord": {"lon": -74.006, "lat": 40.7143}, "weather": [{"id": 802, "main": "Clouds", "description": "scattered clouds", "icon": "03n"}]

| e—
G 11 (2 empty 2022-02-28 11:02:55.630 (T empty

© {"coord": {"lon": 13.4105, "lat": 52.5244}, "weather": [{"id": 802, "main": "Clouds", "description": "scattered clouds", "icon": "03d"}]

R EEEEEEEEE———
G 12 [empty 2022-03-02 20:40:38.172 (T empty

© {"coord’ 0.1257, " lat" :51.5085}, "weather": [{"id":500, "main":"Rain","description":"light rain","icon":"10n"}],"base":"stations","n

_images/kibana1.png
elastic

Home Add data 8 Manage <, Dev tools

o Build a powerful search experience.
Enterprise Search Connect your users to relevant data.

Search everything > Unify your team content.

Analyze data in dashboards.
Monitor infrastructure metrics. O Search and find insights.

Trace application requests. Design pixel-perfect presentations.

Observability Kibana

Centralize & monitor Measure SLAs and react to issues. Visualize & analyze > Plot geographic data.

Model, predict, and detect.

e Prevent threats autonomously.

Security Detect and respond.

SIEM & Endpoint Security Investigate incidents.

Ingest your data Try our sample data
Add data &, AddElastic Agent [A) uploadafile
Ingest data from popular apps and services. AAdd and manage your fleet of Elastic Agents Import your own CSV, NDJSON, or log file.

and integrations.

Manage your data

@ Manage permissions R Monitor the stack Back up and restore @ Manage index lifecycles
Control who has access and Track the real-time health and Save snapshots to a backup Define lifecycle policies to
what tasks they can perform. performance of your repository, and restore to automatically perform

deployment. recover index and cluster operations as an index ages.

state.

() Display a different page on log in

_images/kibana4.png
= [B) Dashboard Editing New Dashboard Options ~ Share Library ~Cancel ~Save | @ Create panel
B v search KaL v Last 15 minutes Show dates

© +Add filter

Xl © Add from library

Add your first panel

Create content that tells a story
about your data.

_images/output1.png
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c1de59143365 docker.elastic.co/kibana/kibana:8.8.8 "/bin/tini -- /usr/L." About a minute ago Up About a minute 6.6.8.8:5681->5681/tcp [STELEY
D3508ac99905 docker.elastic.co/elasticsearch/elasticsearch:8.8.8 "/bin/tini -- /usr/L.” ADOUt a minute ago Up ADOUt a minute ©.8.8.8:9288->92068/tcp, 8.8.8.8:9388->9388/tcp elasticsearch

_images/output11.png
CONTAINER ID TMAGE CREATED STATUS PORTS NAES

F5C54fd91293 obsidiandynamics/kafdrop ~/kafdrop.sh™ 7 seconds ago + Up 3 seconds ©.6.0.0:0886->9008/tcp local-host-kafka-kafdrop-1
9286544521 confluentinc/cp-kafka:5.3.0 “/etc/confluent/dock.” 7 seconds ago Up 4 seconds ©.6.0.9:0892->9092/tcp local-host-kafka-kafka1-1
OcFchFF206d0 "/docker-entrypoint..” 7 seconds ago Up 5 seconds 2888/tcp, ©.9.0.:2181->2181/tcp, 3888/tcp local-host-kafka-zookeeper-1

nav.xhtml

 Table of Contents

 		
 BSPump

 		
 How it works

 		
 Pipeline

 		
 Source

 		
 Trigger Source

 		
 Processor

 		
 Bitswan Tutorials

 		
 Bitswan Tutorials

 		
 Prerequisites

 		
 Installing python

 		
 Installing BSPump module

 		
 BSPump Highlevel architecture

 		
 BSpump Service

 		
 Connection

 		
 Pipeline

 		
 Lookup

 		
 Source

 		
 Processor

 		
 Sink

 		
 Coindesk API Example

 		
 About

 		
 Source and Sink

 		
 Your First Processor

 		
 Creating Custom Processor

 		
 Next steps

 		
 Weather API Example

 		
 About

 		
 Pipeline

 		
 Multiple locations source

 		
 Connect to ES

 		
 Configuration Quickstart

 		
 What is configuration?

 		
 Example

 		
 Running your pump with configuration files

 		
 How to connect to Elastic Search

 		
 Elastic Search Source

 		
 Elastic Search Sink

 		
 Escape From Tarkov Craft Profit Counter

 		
 About

 		
 Source

 		
 Filter Processor

 		
 Dataframe to csv Processor

 		
 What next

 		
 Fortnite Current Store Example

 		
 About

 		
 First sample pipeline

 		
 Export to CSV

 		
 Processor with pandas script

 		
 Conclusion

 		
 What next?

 		
 Install ElasticSearch and Kibana via Docker

 		
 About

 		
 Docker compose with ES and Kibana

 		
 Run Weather pump to pump data to Elastic Search index

 		
 Summarize

 		
 What next

 		
 Install Kafka and KafDrop via Docker

 		
 About

 		
 Docker compose with Kafka and KafDrop

 		
 Pump data to Kafka topic

 		
 Summarize

 		
 What next

 		
 Docker File Quickstart

 		
 About

 		
 quickstart to docker

 		
 docker file

 		
 Creating docker image

 		
 additional commands

 		
 what next

 		
 WebSocket Example

 		
 what is socket

 		
 explain server/client consumer/producer

 		
 Server consumer

 		
 Client producer

 		
 what next

 		
 Blank App

 		
 pipeline

 		
 processor

 		
 service

 		
 module

 		
 app

 		
 init

 		
 how to start the pipeline

 		
 Reference Documentation

 		
 Basics

 		
 Pipeline

 		
 Source

 		
 Source Construction

 		
 Processor

 		
 Sink

 		
 Connection

 		
 Top Level Objects

 		
 BSPumpApplication

 		
 BSPumpService

 		
 Common

 		
 Aggregator

 		
 Bytes

 		
 Flatten

 		
 Hexlify

 		
 Iterator

 		
 Json

 		
 Mapping

 		
 Null

 		
 Print

 		
 Routing

 		
 Tee

 		
 Time

 		
 Transfr

 		
 Advanced

 		
 Generator

 		
 Analyzer

 		
 Lookup

 		
 Anomaly

 		
 Technologies

 		
 Apache Kafka

 		
 Elastic Search

 		
 Files

 		
 InfluxDB

 		
 IPC and Socket

 		
 FTP

 		
 RabbitMQ / AMQP

_images/output3.png
CONTAINER ID
78d2c5Fdf018
28e541817c93
22fa6b928c89

TIMAGE
‘Lukasvecerka/bspump-weather

docker. elastic.co/kibana/kibana:8.8.8
docker.elastic.co/elasticsearch/elasticsearch:8.6.6

COMMAND

"python3 bspump-weat.
*/bin/tini -~ /usr/L.
"/bin/tini -- fusr/L."

CREATED
7 seconds ago
7 seconds ago
8 seconds ago

STATUS
Up 2 seconds
Up 4 seconds
Up 5 seconds

PORTS
88/tcp

0.0.0.0:5601->5681/tcp

9.8.6.8:9208->9208/tcp, 8.6.8.8:9388->9368/tcp

NAMES
bspunp-weather
kibana
elasticsearch

_images/output31.png
4
"A Kafdrop

329.0[2022-02-08T20:53:25.0997]

Kafka Cluster Overview

B8 Bootstrap servers kafka1:19092
& Total topics 3
@ Total partitions 3
® Total preferred partition leader 100%
% Total under-replicated partitions 0
ELIES
¥ D 0 Host % Port = Rack ® Controller © Number of partitions (% of total) @
01 kafkal 19092 - Yes 3(100 %)

£ Topics @&ACLs
Name @) Partitions @ % Preferred @ # Under-replicated @ Custom Config
__confluent.support.metrics 1 100 %] Yes

1 100 %] No

1 100 % o No.

_images/output2.png
Home

Welcome home

Observability Security. Analytics
Consolidate your logs, metrics, application traces, Prevent, collect, detect, and respond to threats for Explore, visualize, and analyze your data using a
and system availability with purpose-built Uls. unified protection across your infrastructure. powerful suite of analytical tools and applications.

Get started by adding integrations

To start working with your data, use one of our many ingest options. Collect
data from an app or service, or upload a file. If you're not ready to use your b
own data, add a sample data set.

JELIEPETNS) Trysampledata ¢y Upload afile

1 LT

Management 9, DevTools {3 Stack Management
@ Manage permissions @R Monitor the stack Back up and restore ", Manage index lfecycles
Control who has access and Track the real-time health and Save snapshots to a backup Define lifecycle pclicies to
what tasks they can perform. performance of your repository, and restore to automatically perform
deployment. recover index and cluster state. operations as an index ages.

(3 Display a different page on log in

_images/output21.png
he
‘A Kafdrop

Kafka Cluster Overview
B Bootstrap servers

& Total topics

@ Total partitions

® Total preferred partition leader

% Total under-replicated partitions

ELIES
% D O Host % Port
(i }1 kafkal 19092

£ Topics @&ACLs

) E—

__confluent.support.metrics.

test

329.0[2022-02-08T20:53:25.0997]

kafka1:19092

100 %

B Rack ® Controller © Number of partitions (% of total) ©
= Yes 2(100 %)

Partitions © % Preferred © # Under-replicated ©

1 100% 0

1 100% o

O star

Custom Config

Yes

_images/pipeline.png
SOURCE

PIPELINE

PROCESSOR

BitSwan PIPELINE

_images/secondoutput.png
data

imageur! manifestid_name raty storeCategory vBucks
hitps:/Atrackercdn.com/legacycdn/fortnite/8BD06908 large.png 6909 | Marsh Walk Strdy | BRSpecialFeatured | 500
hitps:/Atrackercdn.com/legacycdn/fortnite/275915210_large.png 15210 Arcane Vi Epic BRSpeciaFeatured 0
hitps:/Atrackercdn.com/legacycdn/fortnite/2AC415212 largepng | 15212 Pitover Warden Hammer | Epic BRSpecialFeatured | 800
hitps:/Atrackercdn.com/legacycdn/fortnite/6C4015364 large.png | 15364 | Marsha Epic BRSpecialFeatured | 1500
hitps://trackercdn.com/legacycdn/fortnite/46F66923.large.png 6923 | Marshmello Qualty | BRSpecialFeatured | 1500
hitps:/Atrackercdn.com/legacycdn/fortnite/BBAF13565 large.png | 13565 Arcane Jinx Epic BRSpeciaFeatured 0
hitps:/Atrackercdn.com/legacycdn/fortnite/618415287 large.png 15287 | Goblin Giider Epic BRSpecialFeatured | 800
hitps/Atrackercdn.com/legacycdn/fortnite/ASBF15367 large.png | 15367 | MARSHINOBI Epic BRSpecialFeatured | 1600
hitps:/Atrackercdn.com/legacycdn/fortnite/6B6115288 large.png | 15288 | Arm the Pumpkin! Epic BRSpecialFeatured | 200
hitps:/Atrackercdn.com/legacycdn/fortnite/475613566_large.png 13566 | Pow Pow Crusher Epic BRSpecialFeatured | 800
hitps:/Atrackercdn.com/legacycdn/fortnite/DE1815366 large.png | 15366 | Maximum Bounce Rare BRSpeciaFeatured | 500
hitps:/Atrackercdn.com/legacycdn/fortnite/4FTE13567 largepng | 13567 Playground (instrumental) | Rare BRSpecialFeatured | 200
hitps:/Atrackercdn.com/legacycdn/fortnite/AAET15285 large.png | 15285 Pumpkin P'axe Epic BRSpecialFeatured | 800
hitps:/Atrackercdn.com/legacycdn/fortnite/SE246922 large.png 6922 Mello Rider Handmade | BRSpecialFeatured | 500
hitps:/Atrackercdn.com/legacycdn/fortnite/2FC715211 large.png | 15211 | Punching Practice Epic BRSpecialFeatured | 200
hitps:/Atrackercdn.com/legacycdn/fortnite/3FF311849 large.png | 11949 Mello Mallets Rare BRSpeciaFeatured | 800
hitps:/Atrackercdn.com/legacycdn/fortnite/ABES15286 large.png | 15286 Green Goblin Epic BRSpeciaFeatured 0
hitps:/Atrackercdn.com/legacycdn/fortnite/742015369_large.png 15369 | Mello Glo Epic BRSpecialFeatured | 800
hitps:/Atrackercdn.com/legacycdn/fortnite/7AD414623 largepng | 14623 | Azuki Rare BRWeeklyStorefront | 1400
hitps:/Atrackercdn.com/legacycdn/fortnite/SDT912776 large.png | 12776 Hi-Octane rare BRWeekyStorefront | 800
hitps:/Atrackercdn.com/legacycdn/fortnite/TOCO12677 large.png | 12877 | Hedron eplc BRWeekyStorefront | 1500
hitps:/Atrackercdn.com/legacycdn/fortnite/TEED12221 large.png | 12221 Black Ooze Rare BRWeekyStorefront | 500
hitps:/Atrackercdn.com/legacycdn/fortnite/1F2E12775 largepng | 12775 Pitstop rare BRWeeklyStorefront | 1200
hitps:/Atrackercdn.com/legacycdn/fortnite/B14212875 largepng | 12875 Pick Axs rare BRWeekyStorefront | 800
hitps:/Atrackercdn.com/legacycdn/fortnite/613F12774 large.png 12774 Storm Racer rare BRWeeklyStorefront | 1200
hitps:/Atrackercdn.com/legacycdn/fortnite/ 768012220 large.png 12220 Ghaos Scythe Rare BRWeekyStorefront | 800
hitps:/Atrackercdn.com/legacycdn/fortnite/d5E212219 largepng | 12219 | Chaos Agent Epic BRWeeklyStorefront | 1500
hitps:/Atrackercdn.com/legacycdn/fortnite/BAD912674 large.png | 12874 Iso eplc BRWeekyStorefront | 1500
hitps:/Atrackercdn.com/legacycdn/fortnite/ACA012876 large.png | 12876 Multipoint Edge rare BRWeekyStorefront | 800
hitps:/Atrackercdn.com/legacycdn/fortnite/2BED12384 large.png | 12384 Poki Rare BRDallyStorefront 500
hitps:/Atrackercdn.com/legacycdn/fortnite/6ABF13318 large.png | 13318 Bear Hug uncommon | BRDallyStorefront 200
hitps:/Atrackercdn.com/legacycdn/fortnite/DBDBE5393_large.png 5303 | Eagle Sty | BRDailyStorefront 500
hitps:/Atrackercdn.com/legacycdn/fortnite/676E12368 large.png | 12368 | Monks Rare BRDalyStorefront | 1200
hitps:/Atrackercdn.com/legacycdn/fortnite/379812636_smallpng | 12636 | The Renegade rare BRDallyStorefront 500
hitps:/Atrackercdn.com/legacycdn/fortnite/AF2C6888 large.png 6888 Volley Girl Sty | BRDaiyStorefront | 1200

_images/output4.png
@ elastic

‘Stack Management

Index Management

weather-pump-test
Summary Settings Mappings Stats Edit settings

General

Health o yellow
Primaries 1
Docs Count

Storage

Status
Replicas
Docs Deleted

Primary Storage Size

_images/output41.png
b.o
Kafdrop

Topic Messages: coindesk-data
0 s

s o K~~~

empty 2022-03-23 21:32:05.016 [N empty
© {"time": {"updated”: "Mar 23, 2022 21:31:00 UTC", "updatedISO": "2022-03-23T21:31:00+00:00", “updateduk”: Mar 23, 2022 at 21:31 GMT"}, "disclaimer’

empty 2022-03-23 21:32:09.684 [N empty

© {"time": {"updated”: "Mar 23, 2022 21:31:00 UTC", "updatedIS0": "2022-03-23121:31:00+00:00", “updateduk”: Mar 23, 2022 at 21:31 GNT"}, "disclaimer’
[——]

2022-03-23 21:32:14.689 [EXEE empty

© {"tine" (-..,,ama ar 23, 2022 21:31:00 UTC", “updatedISO “updateduk”: "Mar 23, 2022 at 21:31 GNT"}, "disclainer’

empty. 2022-03-23 21:32:19.689 GEIEY empty

{"updated”: "Mar 23, 2022 21:32:60 UTC", “updatedISO": "2022-03-23121:32:00+60:00", "updateduk”: "Mar 23, 2022 at 21:32 GMI"}, "disclaimer'

empty 2022-03-23 21:32:24.689 [N empty

Mar 23, 2022 21:32:00 UTC”, "updatedISO”: "2022-63-23121:32:66+00:00", "updateduk”: "Mar 23, 2022 at 21:32 GMT"}, "disclaimer’

_images/tarkovbot.gif
B ot
o -

Crtiaestaon sy ot b el
= [y

_images/thirdoutput.png
data

imageUrl manifestid_name rarity storeCategory _ vBucks Coef

¥ in.c rni 6909 | Marsh Walk Study | BRSpecialFeatured | 500 | 0.6000000000000001

» in.c rtni 0 15210 Arcane Vi Epic BRSpecialFeatured 04000

» in.c rtni 1521; n 15212 | Piltover Warden Hammer | Epic BRSpecialFeatured | 800 05

» in.c rtni it 15364 | Marsha Epic BRSpecialFeatured | 1500 | 0.2666666667

» in.c rtni large. 6923 | Marshmello Quality | BRSpecialFeatured | 1500 | 0.2666666667
https:/Arackercdn.com/legacycdn/fortnite/BB4F13565 large.png 13565 | Arcane Jinx Epic BRSpecialFeatured 04000
https://trackercdn.com/legacycdn/fortnite/618415287 large.png 15287 | Gobiin Glider Epic BRSpecialFeatured | 800 05

» in.c rinite/A3BF15367. n 15367 | MARSHINOBI Epic BRSpecialFeatured | 1600 | 0.25

» in.c rtni 11 n 15288 | Arm the Pumpkin! Epic BRSpecialFeatured | 200 2.0

» in.c /47561 13566 | Pow Pow Crusher Epic BRSpecialFeatured | 800 05

» in.c rinite/DE181! e 15366 | Maximum Bounce Rare BRSpecialFeatured | 500 | 0.6000000000000001

» in.c rinite/4F7E13567_l 13567 | Playground (instrumental) | Rare BRSpecialFeatured | 200 15

» in.c rinite/AAET1 e 15285 Pumpkin P'axe Epic BRSpecialFeatured | 800 05

» in.c rtni 6922 Mello Rider Handmade | BRSpecialFeatured | 500 02

» in.c rtni 715211 large.pn: 15211 | Punching Practice Epic BRSpecialFeatured | 200 2.0

» in.c rinite/3FF311 .pn 11949 | Mello Mallets Rare BRSpecialFeatured | 800 0.375
https:/Arackercdn.com/legacycdn/fortnite/ABE515286 large.png | 15286 | Green Goblin Epic BRSpecialFeatured 04000
https:/Arackercdn.com/legacycdn/fortnite/742015369_large.png 15369 | Mello Glo Epic BRSpecialFeatured | 800 05

y in.c rinite/7AD414623 n 14623 | Azuki Rare BRWeeklyStorefront | 1400 | 0.2142857143

» in.c rinite/9D791, e 12776 | Hi-Octane rare BRWeekiyStorefront | 800 0.375

» in.c rtni 1; e 12877 | Hedron epic BRWeeklyStorefront | 1500 | 0.2666666667

» in.c rinite/TEED12221 12221 | Black Ooze Rare BRWeekiyStorefront | 500 | 0.6000000000000001

» in.c rinite/1F2E1277: 12775 | Pitstop rare BRWeeklyStorefront | 1200 | 0.25

» in.c rinite/B1421287: .o 12875 | Pick Axis rare BRWeekiyStorefront | 800 0.375

» in.c rinite/613F12774 large. 12774 Storm Racer rare BRWeeklyStorefront | 1200 | 0.25

» in.c rtni 12220 | Ghaos Scythe Rare BRWeekiyStorefront | 800 0.375

» in.c rtni 12219 | Chaos Agent Epic BRWeeklyStorefront | 1500 | 0.2666666667

» in.c rtni 12874 Iso epic BRWeeklyStorefront | 1500 | 0.2666666667
https:/Arackercdn.com/legacycdn/fortnite/AC4012876 large.png | 12876 Muttipoint Edge rare BRWeekiyStorefront | 800 0.375
https:/Arackercdn.com/legacycdn/fortnite/2BED12384 large.png | 12384 Poki Rare BRDailyStorefront 500 | 0.6000000000000001

» in.c rtni F1331 13318 | Bear Hug uncommon | BRDailyStorefront 200 | 1.0

» in.c rinite/DB! large. 5303 | Eagle Study | BRDailyStorefront 500 | 0.6000000000000001

» in.c rtni 1 12368 | Monks Rare BRDailyStorefront | 1200 0.25

» in.c rinite/379812636_small.pny 12636 | The Renegade rare BRDailyStorefront 500 | 0.6000000000000001

y in.c rni e. 6888 Voley Gir Study | BRDailyStorefront | 1200 | 0.25

_images/weather_pipeline.png
OpenWeather
New York

Requestto
get data

AP

JSON flle

Requestto
get data

OpenWeather API:
Berlin

JSON fle

Command Prompt

x

Data

Requestto
get data

OpenWeather API:
London

LoadSource

SteJsonToDictParser

PPrintSink

JSON flle

Pipeline

_static/file.png

_static/minus.png

_static/plus.png

_images/fortnitepump_diagram.png
[Fortnite Current Store

Cur oSV File
¥ ¥
Request to get
data
JSONfle o
v
HTTPClientSource AddRarityPriceCoet JSONtoCSV Nulsink

Pipeline

_images/grafana1.png
B+ O 0]

a & o ®

e &

88 General / Home

Welcome to Grafana

Basic

The steps below wil
quide you to quickly
finish setting up your
Grafana installation.

Starred dashboards

Recently viewed dashboards

New dashboard

Need help? Documentation Tutorials Community Public Slack

Remove this panel

TUTORIAL
DATA SOURCE AND DASHBOARDS

Grafana fundamentals

Set up and understand Grafana if you have no prior experience.
This tutorial guides you through the entire process and covers the
“Data source" and "Dashboards” steps to the right.

L

Dashboards -

COMPLETE COMPLETE
Add your first data source Create your first dashboard
@ oo

(=]=] >

Learn how in the docs (7

“My colleagues might
not be blaming me,

but am | doing that
tomyself?”

% GrofonaLobs + Dapper

Sz

15

Learn how in the docs &

Latest from the blog

Mar 04

Turn mistakes into wins: How our no-blame culture works at Grafana
Labs

Malcolm joined Grafana Labs in 2018 and now works on release processes for
Grafana. He is also a founding member of Grafana's Wellbeing ERG (employee
resource group), which organizes activities such as mindfulness courses, book
clubs, and lightning talks for all Grafanistas. I've recently joined a new team at
Grafana Labs, one that is focused on releasing new versions of Grafana. With so
many security issues being found recently, this has made this work pretty full
on.

Mar 03

How Dapper Labs uses Grafana Cloud to meet the global demand of
NFT Mania

Ever since a JPEG created by the digital artist Beeple sold for more than $69
million in 2021, the worldwide obsession with NFTs (non-fungible tokens) that
represent digital collectibles, art, and media has been growing. A company at
the forefront of the NFT world is the blockchain gaming studio Dapper Labs,
‘which leverages blockchain to build addictive games (such as Cryptokitties),
verify authentic digital collectibles, and run fan tokens for sports personalities
and music artists.

Mar 02

Naw in Grafana 8 4: How tn tiea fill-ranna Inn unlima histaarame with

_images/file_hierarchy.png
v I mypipeline
b apppy
t coindeskpy
Hoinity
t module.py
£ pipeline.py
y——
t senicepy

e s

_images/fortnitebot.gif
—— +
obecnt Lo

o obecnd
- e
e
Prtontor
You e msing the resred rgament 0 i commond.
e
iy
Prtvontor 0
You e msing the resred rgament 0 his command.
B
e
Prtontot 0
You ar msing the reured rgament 0 his command.
B
I~
yprcelow
@

.
o

@ =

E Y

_images/grafana2.png
+ O 10

oo
oo

o &

@ Configuration

Organization: Main Org,

B Datasources A Users A\ Teams

Q search by name or type

InfluxDB-1
InfluxDB

InfluxDB-2
InfluxDB | 10.17.168.197:8086

InfluxDB-3
InfluxDB

¥ Plugins fif Preferences o* APIkeys

O Documentation | @ Support | [Community | Open Source | v8.4.1 (53f5c6a44c) | b New version available!

_images/coindesk_pipeline.png
Request to get

data

Coindesk APl

x

JSON flle

Command Prompt

x

Data

v

HTTPClientSource

SteJsonToDictParser

EnrichProcessor

PPrintSink

Pipeline

_images/config1.png
Script path: T AAA882220000000 S0 I £

Parameters: ¢ name0fYourConfig.conf|

