
BSPump Reference Documentation
Documentation

Release v1903

TeskaLabs

Jun 06, 2022

CONTENTS

1 Introduction 1

2 How to install BitSwan 3
2.1 How it works . 3
2.2 Bitswan Tutorials . 5
2.3 Reference Documentation . 57

Python Module Index 139

Index 141

i

ii

CHAPTER

ONE

INTRODUCTION

BitSwan is a product designed to real-time data processing. By means of so-called real-time processors BitSwan is
able to analyze hundreds of data streams from a lot of various sources at the same time, which makes it suitable to
detect anomalies and data patterns as well as other situations when instantaneous action is needed. BitSwan is based
on Python language.

1

BSPump Reference Documentation Documentation, Release v1903

2 Chapter 1. Introduction

CHAPTER

TWO

HOW TO INSTALL BITSWAN

Use command in your command prompt

pip install bspump

or you can clone the github repository BitsSwanPump

pip install git+https://github.com/LibertyAces/BitSwanPump.git

2.1 How it works

heeelp

2.1.1 Pipeline

Pipeline is responsible for data processing in BSPump. Individual Pipeline objects work asynchronously and
independently of one another (provided dependence is not defined explicitly – for instance on a message source from
some other pipeline). Each Pipeline is usually in charge of one concrete task.

Pipeline has three main components:

• Source

• Processor

• Sink

Source connects different data sources with the Pipeline to be processed

3

https://github.com/LibertyAces/BitSwanPump

BSPump Reference Documentation Documentation, Release v1903

Multiple sources

A Pipeline can have multiple sources. They are simply passed as a list of sources to a Pipeline build() method.

class MyPipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

[
MySource1(app, self),
MySource2(app, self),
MySource3(app, self),

]
bspump.common.NullSink(app, self),

)
:meta private:

The main component of the BSPump architecture is a so-called Processor. This object modifies, transforms and
enriches events. Moreover, it is capable of calculating metrics and creating aggregations, detecting anomalies or
react to known as well as unknown system behaviour patterns.
Processors differ as to their functions and all of them are aligned according to a predefined sequence in pipeline
objects. As regards working with data events, each Pipeline has its unique task.

Processors are passed as a list of Processors to a Pipeline build() method

class MyPipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

[
MyProcessor1(app, self),
MyProcessor2(app, self),
MyProcessor3(app, self),

]
bspump.common.NullSink(app, self),

)
:meta private:

Sink object serves as a final event destination within the pipeline given. Subsequently, the event is dispatched/written
into the system by the BSPump

2.1.2 Source

Source is an object designed to obtain data from a predefined input. The BSPump contains a lot of universally usable,
specific source objects, which are capable of loading data from known data interfaces. The BitSwan product further
expands these objects by adding source objects directly usable for specific cases of use in industry field given.

Each source represent a coroutine/Future/Task that is running in the context of the main loop. The coroutine method
main() contains an implementation of each particular source.

Source MUST await a Pipeline ready state prior producing the event. It is acomplished by await self.Pipeline.ready()
call.

4 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Trigger Source

This is an abstract source class intended as a base for implementation of ‘cyclic’ sources such as file readers, SQL
extractors etc. You need to provide a trigger class and implement cycle() method.

Trigger source will stop execution, when a Pipeline is cancelled (raises concurrent.futures.CancelledError). This
typically happens when a program wants to quit in reaction to a on the signal.

You also may overload the main() method to provide additional parameters for a cycle() method.

async def main(self):
async with aiohttp.ClientSession(loop=self.Loop) as session:

await super().main(session)

async def cycle(self, session):
session.get(...)

2.1.3 Processor

The main component of the BSPump architecture is a so called processor. This object modifies, transforms and
enriches events. Moreover, it is capable of calculating metrics and creating aggregations, detecting anomalies or react
to known as well as unknown system behavior patterns.

Processors differ as to their functions and all of them are aligned according to a predefined sequence in pipeline objects.
As regards working with data events, each pipeline has its own unique task.

2.2 Bitswan Tutorials

2.2.1 Bitswan Tutorials

in this series of tutorials we will walk you through basic and more advanced examples and demos to initiate your
adventure with BSPump.

You will learn more about the BSPump architecture and how each component works. However, before you can start on
your journey you should know basics of python and be able to set up your programming environment.

Prerequisites

Here are some quick tutorials that will help you installing python and BSPump module using package installer for
Python called pip.

2.2. Bitswan Tutorials 5

BSPump Reference Documentation Documentation, Release v1903

Installing python

Firstly you should check whether you don’t already have python installed. Open your command line or terminal and
type:

C:/> python --version
> Python 3.8.4

if your python version is lower than 3.8 check Python.org

If you are a complete beginner to python or you want more information about python check out the Python tutorial

Installing BSPump module

To install BSPump module:

pip install asab bspump

or alternatively using

pip install git+https://github.com/LibertyAces/BitSwanPump-BlankApp.git

If you dont have installed pip type:

python get-pip.py

To check the version use.

pip --version

Have you managed to install everything? Then you are ready for creating your first BSPump.

BSPump Highlevel architecture

BSPump is made from several components which are going to be explained in this tutorial. As you probably know,
Bitswan is a real-time stream processor. To be able to process and work with large amount of data, BSpump uses so-
called Event Stream Processing, data is propagated through a data pipeline in Events. Event is a single data point with
a timestamp. To handle these events Pipeline has special components that be compatible with each other. .Therefore,
each pipeline is made from several vital compoents: source, processor and sink. However, for the pipeline to work
Bitswan uses BSPump Service to handle and register connetions, pipelines etc.

examples/howitworks/bspump-architecture.png

Firstly, we will walk you through each of components and its functionality, so you can later build your own pipeline.
Doesn’t that sounds cool?

6 Chapter 2. How to install BitSwan

https://www.python.org/
https://docs.python.org/3/tutorial/index.html

BSPump Reference Documentation Documentation, Release v1903

BSpump Service

Service is part where pipelines and connections are registered.

We will go through the following code and explain each part

import asab

from .pipeline import TCPPipeline

class BlankService(asab.Service):

def __init__(self, app, service_name="blank.BlankService"):
super().__init__(app, service_name)

async def initialize(self, app):
svc = app.get_service("bspump.PumpService")

Create and register all connections here

Create and register all matrices here

Create and register all lookups here

Create and register all pipelines here

self.TCPPipeline = TCPPipeline(app, "TCPPipeline")
svc.add_pipeline(self.TCPPipeline)

await svc.initialize(app)

async def get_data(self, message="be"):
await self.TCPPipeline.process(message)
return "Check stdout"

In this example we

Connection

To be able to connect to a data source you have to make a connection. connection is usually done in Source class and
then registered in service class.

Pipeline

pipeline

import sys

import bspump
import bspump.common
import bspump.socket

(continues on next page)

2.2. Bitswan Tutorials 7

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

from .processor import ShakespeareanEnricher

class TCPPipeline(bspump.Pipeline):
"""
To test this pipeline, use:
socat STDIO TCP:127.0.0.1:8888
or visit http://localhost:8080/blank?message=die
"""

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.socket.TCPSource(app, self, config={"host": "0.0.0.0", "port": 8888}),
ShakespeareanEnricher(app, self),
bspump.common.PPrintSink(app, self, stream=sys.stderr)

)

Lookup

Source

Description about source. What is it ..

Streaming Source

Streaming Source enables events to enter in so-called stream. Events flow through source in real time manner as they
are being delivered by the input technology.

Following technologies can be used as a streaming source

1. Kafka

2. Elastic Search

3. RabbitMQ

Elastic Search Source

TODO

Description

Example

Explanation

8 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Kafka Source

TODO

Description

Example

Explanation

Trigger Source

Unlike streaming source, Trigger Source is used when we need to pump data from SQL-like databases or files. They
have to be triggered by an external event or a repeating timer (requesting JSON data from APIs every 10 minutes).

Trigger Source can be used for:

1. HTTP client/server

2. SQL query

3. TCP

4. Files: csv, json etc.

TCP source

Description
TCP Source can be to obtain data from peer to peer connection using TCP.

Use case
TODO

Example

class EchoPipeline(bspump.Pipeline):

'''
To test this pipeline, use:
socat STDIO TCP:127.0.0.1:8083
'''

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

bspump.ipc.StreamServerSource(app, self, config={'address': '0.0.0.0 8083'}),
)

2.2. Bitswan Tutorials 9

BSPump Reference Documentation Documentation, Release v1903

HTTP Client Source

Description
HTTP Client Source gets data from a specified API URL.

Use case
if you need pump data from a single API URL you can use this Source.

Example

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.http.HTTPClientSource(app, self, config={

'url': '<<API URL>>'
}).on(<<Here you will use some type of trigger>>),

)

The API URL can be any API you wish to get data from.

You will need to specify your Trigger type. You can choose your Trigger here : TODO <<reference>>

Note
Full functional example with this source can be found here coindesk

MySQL

Description

Example

Explanation

JSON File

Description

Example

Explanation

10 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

CSV File

Description

Example

Explanation

Processor

Processor

import bspump

class ShakespeareanEnricher(bspump.Processor):

def process(self, context, event):
if isinstance(event, bytes):

event = event.decode("utf-8").replace('\r', '').replace('\n', '')
return 'To {0}, or not to {0}?'.format(event)

Sink

Sink is the part responsible for the output of the data to a database, standard output in your computer on into another
pipeline.

PPrintSink

In this example we are going to use PPrintSink which prints the data from pipeline to stdout or any other stream that is
connected to the pipeline.

To use sink in your pipeline

self.build(
bspump.common.PPrintSink(app, self, stream=sys.stderr)

)

PPrintSink class is added to your pipeline. It should be the last part of the pipeline for the pipeline to work correctly.

to further explain the , bspump.common. is the part where you specify the path to the class PPrintSink is the name of
the class. In the parentheses you can specify the output stream. If none is specified stdout is used.

code

class PPrintSink(Sink):
"""
Description:

|

"""

(continues on next page)

2.2. Bitswan Tutorials 11

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

def __init__(self, app, pipeline, id=None, config=None, stream=None):
"""
Description:

|

"""
super().__init__(app, pipeline, id, config)
self.Stream = stream if stream is not None else sys.stdout

The whole code can be found at BitSwan BlankApp

2.2.2 Coindesk API Example

About

In this example we will learn how to extract any data from API. We will be using a HTTP Client Source for the API
request.

In this example we will be using API from Coindesk to get the current price of Bitcoin.

The final pipeline will simply get data from the API request as a JSON, covert it to python dictionary, and output the
data to Command Prompt. Additionally, I will show you how to create your own Processor to enrich the data.

The following code can be found here in our GitHub repo.

A diagram of the final pipeline.

12 Chapter 2. How to install BitSwan

https://github.com/LibertyAces/BitSwanPump-BlankApp
https://www.coindesk.com/
https://github.com/LibertyAces/BitSwanPump/blob/feature/restructured-text/examples/bspump-http.py

BSPump Reference Documentation Documentation, Release v1903

Source and Sink

In the code below, you can see the basic structure of a pipeline. The important part is the self.build() method,
where its parameters are the single components of the pipeline. In this part we will use two main components each
pipeline must contain: Source and Sink. Do not copy this part of code yet, because it is not example on its own

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
#Source of the pipeline
bspump.http.HTTPClientSource(app, self, config={

'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
}).on(bspump.trigger.PeriodicTrigger(app, 5)),
#Sink of the pipeline
bspump.common.PPrintSink(app, self),

)

Source is a component that supplies the pipeline with data. In our example we will use a specific type of Source.
Because we need to Pump data from API, we need to send a request to the API to receive our data. This means that
our Source has to regularly and send the request using API. For this reason we will be using so-called Trigger Source.
More about Trigger Source .

HTTP Client Source can have many configurations, but in our example we just need to specify our URL address, using
config={'url': '<OUR URL>'} as parameter in HTTP Client Source.

Because we are using Trigger Source, we need to specify which Trigger we will be using. There are many types of
Triggers, but in our example we will be using PeriodicTrigger, which triggers in time intervals specified in the parameter.
bspump.trigger.PeriodicTrigger(app, <<Time parameter in seconds>>))

Each pipeline has to have Sink. In our example we want to see the result of the data, so we will be using PPrintSink,
which simply prints the data to the Command Prompt.

You can try to copy paste this chunk of code and try it yourself. Make use you have BSPump module installed for your
Python, if not you can follow our guide Installing BSPump module .

#!/usr/bin/env python3
import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.http.HTTPClientSource(app, self, config={

'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
}).on(bspump.trigger.PeriodicTrigger(app, 5)),
bspump.common.PPrintSink(app, self),

)
(continues on next page)

2.2. Bitswan Tutorials 13

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

if __name__ == '__main__':
app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")
pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)
app.run()

The program should output a JSON similar to this

(b'{"time":{"updated":"Jan 31, 2022 15:47:00 UTC","updatedISO":"2022-01-31T15:4'
b'7:00+00:00","updateduk":"Jan 31, 2022 at 15:47 GMT"},"disclaimer":"This data'
b' was produced from the CoinDesk Bitcoin Price Index (USD). Non-USD currency '
b'data converted using hourly conversion rate from openexchangerates.org","cha'
b'rtName":"Bitcoin","bpi":{"USD":{"code":"USD","symbol":"$","rate":"37,789'
b'.6250","description":"United States Dollar","rate_float":37789.625},"GBP":{"'
b'code":"GBP","symbol":"£","rate":"28,145.2970","description":"British P'
b'ound Sterling","rate_float":28145.297},"EUR":{"code":"EUR","symbol":"€"'
b',"rate":"33,772.9280","description":"Euro","rate_float":33772.928}}}')

As you can see this is not ideal format to read our data from. We will need to convert our incoming data.

Your First Processor

After we have a functional pipeline, we can start with the more interesting part, Processors. The Processor is the
component which works with data of an event. In this example we will use a simple Processor, StdJsonToDictParser,
which only converts the incoming JSON to python Dict type, that is much easier to work with in python.

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.http.HTTPClientSource(app, self, config={

'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
}).on(bspump.trigger.PeriodicTrigger(app, 5)),
bspump.common.StdJsonToDictParser(app, self),
bspump.common.PPrintSink(app, self),

)

this Processor is added simply by adding it to self.build() between Source and Sink.

You should be getting more organized output

{'bpi': {'EUR': {'code': 'EUR',
'description': 'Euro',
'rate': '33,794.5989',
'rate_float': 33794.5989,
'symbol': '€'},

'GBP': {'code': 'GBP',
'description': 'British Pound Sterling',

(continues on next page)

14 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

'rate': '28,163.3569',
'rate_float': 28163.3569,
'symbol': '£'},

'USD': {'code': 'USD',
'description': 'United States Dollar',
'rate': '37,813.8733',
'rate_float': 37813.8733,
'symbol': '$'}},

'chartName': 'Bitcoin',
'disclaimer': 'This data was produced from the CoinDesk Bitcoin Price Index '

'(USD). Non-USD currency data converted using hourly conversion '
'rate from openexchangerates.org',

'time': {'updated': 'Jan 31, 2022 15:49:00 UTC',
'updatedISO': '2022-01-31T15:49:00+00:00',
'updateduk': 'Jan 31, 2022 at 15:49 GMT'}}

Creating Custom Processor

Because a most of your use cases will be unique, it is most likely that there will be no existing Processor that could do
the work. Consequently, you will have to implement your own Processor.

Creating new Processor is not a complicated task. You will need to follow the basic structure of an general Processor.
You can simply copy-paste the code below:

class EnrichProcessor(bspump.Processor):
def __init__(self, app, pipeline, id=None, config=None):

super().__init__(app, pipeline, id=None, config=None)

def process(self, context, event):

return event

This a sample processor class. The most important part of this processor class is the process method. This method
will be called when an event is passed to the Processor. As you can see, the default implementation of process method
returns the event return event. Event must be passed to the following component, another Processor or Sink.

If you wish to use your new Processor in our case EnrichProcessor You will need to reference it in self.build method.
You can do that simply by adding it to self.build parameters.

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.http.HTTPClientSource(app, self, config={

'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
}).on(bspump.trigger.PeriodicTrigger(app, 5)),
bspump.common.StdJsonToDictParser(app, self),
EnrichProcessor(app, self),
bspump.common.PPrintSink(app, self),

)

2.2. Bitswan Tutorials 15

BSPump Reference Documentation Documentation, Release v1903

The last step is implementation. For our example, I created a simple script that takes the incoming event (python
dictionary that contains price of Bitcoin in USD, Euro, and Pounds) and adds a new branch with a Japanese yen. The
EnrichProcessor class has a new method convertUSDtoJPY which calculates the price of yen based on USD conversion
rate (Note: The exchange rate is outdated for sake of simplicity of this example).

class EnrichProcessor(bspump.Processor):
def __init__(self, app, pipeline, id=None, config=None):

super().__init__(app, pipeline, id=None, config=None)

def convertUSDtoJPY(self, usd):
return usd * 113.70 #outdated rate usd/jpy

def process(self, context, event):
jpyPrice = str(self.convertUSDtoJPY(event["bpi"]["USD"]["rate_float"]))

event["bpi"]["JPY"] = {
"code": "JPY",
"symbol": "¥",
"rate": ''.join((jpyPrice[:3], ',', jpyPrice[3:])),
"description": "JPY",
"rate_float": jpyPrice

}

return event

When we add all parts together we get this functional code.

Your ouput should look something like this:

{'bpi': {'EUR': {'code': 'EUR',
'description': 'Euro',
'rate': '33,796.7930',
'rate_float': 33796.793,
'symbol': '€'},

'GBP': {'code': 'GBP',
'description': 'British Pound Sterling',
'rate': '28,165.1854',
'rate_float': 28165.1854,
'symbol': '£'},

'JPY': {'code': 'JPY',
'description': 'JPY',
'rate': '429,9716.52771',
'rate_float': '4299716.52771',
'symbol': '¥'},

'USD': {'code': 'USD',
'description': 'United States Dollar',
'rate': '37,816.3283',
'rate_float': 37816.3283,
'symbol': '$'}},

'chartName': 'Bitcoin',
'disclaimer': 'This data was produced from the CoinDesk Bitcoin Price Index '

'(USD). Non-USD currency data converted using hourly conversion '
'rate from openexchangerates.org',

'time': {'updated': 'Jan 31, 2022 15:53:00 UTC',
(continues on next page)

16 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

'updatedISO': '2022-01-31T15:53:00+00:00',
'updateduk': 'Jan 31, 2022 at 15:53 GMT'}}

To Summarize what we did in this example:

1. we created a sample pipeline with a Source and Sink

2. we added a new Processor that converts incoming events to python dictionary

3. we created a custom Processor that adds a information about Japanese currency to the incoming event and passes
it to Sink .

Next steps

You can change and modify the pipeline in any manner you want. For example, instead of using PPrintSink you can
use our Elasticsearch Sink which loads the data to Elasticsearch. Read more about How to connect to Elastic Search .

2.2.3 Weather API Example

About

In this example we will learn how get data from one or multiple HTTP sources using an API request. In this case we
cannot use basic HTTPClientSource, because it returns data only from one API query, so to get data from different
queries we will have to define a new source for this use case.

The final pipeline will get data from multiple API requests in one time as a JSON, convert it to python dictionary, and
output the data to Command Prompt.

In this example we will be using API from Open Weather to get current weather data (e.g, temperature, feels like
temperature, biometric pressure etc).

In this example we will use .conf file to store configuration for our pump. More about how to write configuration is
here Configuration Quickstart.

A diagram of the finished pipeline

2.2. Bitswan Tutorials 17

https://openweathermap.org/

BSPump Reference Documentation Documentation, Release v1903

Pipeline

In the code below you can see the structure of SamplePipeline which we need for this use case. The important part
is the self.build() method where its parameters are the single components of the pipeline. Do not forget that every
pipeline requires both source and sink to function correctly.

Source is a component that supply the pipeline with data. In our example we will use a specific type of source. Because
we need to Pump data from API, we need to send request to the API to receive our data. This means that our source
has to be “trigger” the request and send it to the API. For this reason we will be using a so-called trigger source. More
about Trigger Source.

Because we are using Trigger Source. We need to specify which trigger we will be using. There are more types of
triggers, but in our example we will be using PeriodicTrigger, which triggers in time intervals specified in the parameter.
bspump.trigger.PeriodicTrigger(app, <<Time parameter in seconds>>))

Each pipeline requires a sink. In our example we want to see the result of the data, so we will be using PPrintSink
which simply prints the data to the Command Prompt.

You can try to copy-paste this chunk of code and try it yourself. You must have BSPump module installed. Follow our
guide Installing BSPump module.

Simply rewrite <<LOCATION>> to city you want to obtain data from and put your API key which you will get after you
register on https://openweathermap.org/ to <<YOUR PRIVATE API KEY>> section. You can find more about how to
modify your URL here `https://openweathermap.org/current`_

#!/usr/bin/env python3

import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.http.HTTPClientSource(app, self, config={

'url': 'https://api.openweathermap.org/data/2.5/weather?q=<<LOCATION>>&
→˓units=metric&appid=<<YOUR PRIVATE API KEY>>'

}).on(bspump.trigger.PeriodicTrigger(app, 5)),
bspump.common.PPrintSink(app, self),

)

if __name__ == '__main__':
app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")
pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)
app.run()

You should get output like this:

~python3 example.py
BitSwan BSPump version 21.11-17-g6b346fd

(continues on next page)

18 Chapter 2. How to install BitSwan

https://openweathermap.org/

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

27-Jan-2022 18:43:00.177421 NOTICE asab.application is ready.
1 pipeline(s) ready.
(b'{"coord":{"lon":-0.1257,"lat":51.5085},"weather":[{"id":802,"main":"Clouds",'
b'"description":"scattered clouds","icon":"03n"}],"base":"stations","main":{"t'
b'emp":8.91,"feels_like":6.86,"temp_min":6.8,"temp_max":10.14,"pressure":1030,'
b'"humidity":71},"visibility":10000,"wind":{"speed":3.6,"deg":290},"clouds":{"'
b'all":35},"dt":1643304840,"sys":{"type":2,"id":2019646,"country":"GB","sunris'
b'e":1643269577,"sunset":1643301595},"timezone":0,"id":2643743,"name":"London"'
b',"cod":200}')

Multiple locations source

In the code above, the pump simply returns data from one location. But in our use case we need to get data from
multiple locations, which means we need to get data from multiple API’s URL. Next, we define our specific trigger
source.

We use ClientSession from aiohttp library to create session where get data from GET method as response for every
city in our list. Then we store the data from response to event variable and process the event to pipeline. More about
aiohttp session can be found here

class LoadSource(bspump.TriggerSource):

def __init__(self, app, pipeline, choice=None, id=None, config=None):
super().__init__(app, pipeline, id=id, config=config)
self.cities = ['London','New York','Berlin'] #List of cities

async def cycle(self):
async with aiohttp.ClientSession() as session:

#goes through the list of cities and requests from API for each city
for city in self.cities:

async with session.get(url=self.Config['url'].format(city=city, api_
→˓key=self.Config['api_key'])) as response:

event = await response.content.read()
await self.process(event)

You can see that in this example we are using self.Configmethod to get the API key and the url from the configuration
file. It is good to have the API key and the url in configuration file, because changes can be made simply in the
configuration file.

For example, create a weather-pump.conf file, and into that file you can copy/paste code below

[pipeline:SamplePipeline:LoadSource]
url = https://api.openweathermap.org/data/2.5/weather?q={city}&units=metric&appid={api_
→˓key}
api_key = <<YOUR PRIVATE API KEY>>

When you run your pump with configuration file you have to run it with -c switch. So after you finish your pump and
you need to test it, type python3 your-pump-name.py -c weather-pump.conf to the terminal.

You can change the list of cities to any locations you wish. The important part of this source is async def
cycle(self) method where we request the API’s url for every location from our list and process them in the pipeline.

Just be sure that you import aiohttp package and change HTTPClientSource with our new specified LoadSource.

You can copy-paste the final code here:

2.2. Bitswan Tutorials 19

https://docs.aiohttp.org/en/stable/client_quickstart.html

BSPump Reference Documentation Documentation, Release v1903

#!/usr/bin/env python3

import bspump
import bspump.common
import bspump.http
import bspump.trigger
import aiohttp

class LoadSource(bspump.TriggerSource):

def __init__(self, app, pipeline, choice=None, id=None, config=None):
super().__init__(app, pipeline, id=id, config=config)
self.cities = ['London','New York','Berlin'] #List of cities

async def cycle(self):
async with aiohttp.ClientSession() as session:

#goes through the list of cities and requests from API for each city
for city in self.cities:

async with session.get(url=self.Config['url'].format(city=city, api_
→˓key=self.Config['api_key'])) as response:

event = await response.content.read()
await self.process(event)

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
LoadSource(app, self).on(

bspump.trigger.PeriodicTrigger(app, 5)
),
bspump.common.PPrintSink(app, self),

)
if __name__ == '__main__':

app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")
pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)
app.run()

After you execute this code you should get this output in terminal:

~ python3 example.py -c example.conf
BitSwan BSPump version 21.11-17-g6b346fd
27-Jan-2022 18:56:14.058308 NOTICE asab.application is ready.
1 pipeline(s) ready.
(b'{"coord":{"lon":-0.1257,"lat":51.5085},"weather":[{"id":802,"main":"Clouds",'
b'"description":"scattered clouds","icon":"03n"}],"base":"stations","main":{"t'
b'emp":8.79,"feels_like":6.72,"temp_min":6.8,"temp_max":10.14,"pressure":1030,'
b'"humidity":70},"visibility":10000,"wind":{"speed":3.6,"deg":290},"clouds":{"'

(continues on next page)

20 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

b'all":35},"dt":1643305383,"sys":{"type":2,"id":2019646,"country":"GB","sunris'
b'e":1643269577,"sunset":1643301595},"timezone":0,"id":2643743,"name":"London"'
b',"cod":200}')
(b'{"coord":{"lon":-74.006,"lat":40.7143},"weather":[{"id":801,"main":"Clouds",'
b'"description":"few clouds","icon":"02d"}],"base":"stations","main":{"temp":-'
b'1.13,"feels_like":-1.13,"temp_min":-3.36,"temp_max":0.9,"pressure":1030,"hum'
b'idity":51},"visibility":10000,"wind":{"speed":0.45,"deg":34,"gust":1.34},"cl'
b'ouds":{"all":19},"dt":1643305980,"sys":{"type":2,"id":2039034,"country":"US"'
b',"sunrise":1643285428,"sunset":1643321212},"timezone":-18000,"id":5128581,"n'
b'ame":"New York","cod":200}')
(b'{"coord":{"lon":13.4105,"lat":52.5244},"weather":[{"id":803,"main":"Clouds",'
b'"description":"broken clouds","icon":"04n"}],"base":"stations","main":{"temp'
b'":6.01,"feels_like":1.09,"temp_min":5.01,"temp_max":6.85,"pressure":1003,"hu'
b'midity":91},"visibility":10000,"wind":{"speed":9.39,"deg":251,"gust":15.2},"'
b'clouds":{"all":75},"dt":1643305512,"sys":{"type":2,"id":2011538,"country":"D'
b'E","sunrise":1643266558,"sunset":1643298116},"timezone":3600,"id":2950159,"n'
b'ame":"Berlin","cod":200}')

Connect to ES

You can change and modify the pipeline in any manner you want. For example, instead of using PPrintSink you can
use our Elasticsearch Sink which loads the data to Elasticsearch. If you want to read more about How to connect to
Elastic Search.

2.2.4 Configuration Quickstart

In this tutorial you will learn about configuration in BSPump and how to use it.

What is configuration?

Every BitSwan object inside BSPump application can be configured using user-defined configuration options. It’s good
practice to write configuration in .conf files, because making changes will be much easier.

Every object has default configuration values set in ConfigDefaults. If you set ConfigDefaults in your specific
class you override same values in ConfigDefaults, which are inherited from the parent class.

Configuration .conf files in are built-in in ASAB, the platform on which BSPump is built. You can find more about
it in ASAB documentation

There are 3 methods to configure object
1. By defining ConfigDefaults dictionary inside specific class

class MySQLSource(TriggerSource):

ConfigDefaults = {
'query': 'SELECT id, name, surname FROM people;'

}

2.Using config parameter in the object’s constructor

2.2. Bitswan Tutorials 21

https://asab.readthedocs.io/en/latest/asab/config.html

BSPump Reference Documentation Documentation, Release v1903

bspump.mysql.MySQLSource(app, self, "MySQLConnection1", config={'query': 'SELECT id,␣
→˓name, surname FROM people;'})

3. By creating .conf file

[pipeline:PipelineID]
query = SELECT id, name, surname FROM people;

Example

This example shows how to create a configuration file to get data from API via basic HTTPClientSource.

In first step we create .conf file where we store API key

[pipeline:SamplePipeline]
url = https://api.openweathermap.org/data/2.5/weather?q=London&units=metric&appid={api_
→˓key}
api_key = <YOUR PRIVATE API KEY>

[pipeline:SamplePipeline] in this line we specify which class the configuration applies to. Values below this line
override the same values in ConfigDefaults of specified classes.

Configuration in .conf file is accessible via self.Config method (in this case we use self.Config['api_key'] to get
API key from our .conf file)

In next step we have a sample pipeline that gets data through https://openweathermap.org/ API using API’s URL and
API key from .conf file. See more in coindesk.

#!/usr/bin/env python3

import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.http.HTTPClientSource(app, self,
config={'url': self.Config['url'].format(api_key = self.Config['api_key'])}).

→˓on(bspump.trigger.PeriodicTrigger(app, 2)),
bspump.common.StdJsonToDictParser(app, self),
bspump.common.PPrintSink(app, self)

)

if __name__ == '__main__':
app = bspump.BSPumpApplication()

(continues on next page)

22 Chapter 2. How to install BitSwan

https://openweathermap.org/

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

svc = app.get_service("bspump.PumpService")
Construct and register Pipeline
pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)

app.run()

Running your pump with configuration files

When you want to run your pump with configuration file there are two ways to do that.

In terminal

To run your pump with a configuration file, use -c switch in the terminal, after that switch there has to be file_path/
file_name.conf.

For example when you have configuration file in same folder

~python3 mypumptest.py -c mypumpconfiguration.conf

In your IDE

To run your pump in IDE you have to set the run parameters. For example in PyCharm you have to go to Run -> Edit
Configurations. . . and then change the run parameters to -c file_path/nameOfYourConfig.conf

2.2.5 How to connect to Elastic Search

BSPump supports the connection to Elastic Search platform. It is possible to connect to ES just in few lines of code.

Elastic Search Source

You can use Elastic Search Source to take data from Elastic Search index for further analysis over them (e.g. in your
pump).

2.2. Bitswan Tutorials 23

BSPump Reference Documentation Documentation, Release v1903

Prerequisites

You can access ElasticSearch only if you have ElasticSearch already installed on your server or you can try to install it
locally with this tutorial Install ElasticSearch and Kibana via Docker.

The process of taking data from Elastic Search index is simple, you will need few things.

What you will need:

1. URL address of your Elastic Search

2. Index with data

3. Configuration file

4. Register the service of ESConnection

Configuration File

You will need to create .conf file with this configuration

ElasticSearch Source
[pipeline:<<Name of your pipeline class>>:ElasticSearchSource]
index=<<Name of your index>>

Elasticsearch connection
[connection:ESConnection]
url=<<Your ElasticSearch URL address>>

The configuration file can contain additional information depending on your implementation. It is essential to include:
- index : name of the index that will be used to get data from - url : URL of your connection with ES

For more information visit our quickstart to using configs: Configuration Quickstart.

Code example

To create a connection with Elastic Search you will need to do two things:

1. Add ElasticSearchSource component to self.build method of the pipeline class

2. Add trigger which take data from index every defined time

3. create a service of your ES Connection.

You can implement your own ElasticSearch connection but the default connection will look like this:

import bspump.elasticsearch

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

Adding ES Source component with trigger set up to trigger data every 5 seconds
bspump.elasticsearch.ElasticSearchSource(app, self, "ESConnection").on(bspump.

→˓trigger.PeriodicTrigger(app, 5)),
Rest of the pipeline with source and processors

(continues on next page)

24 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

)

if __name__ == '__main__':
app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")

Part where you add the ESConnection service
es_connection = bspump.elasticsearch.ElasticSearchConnection(app, "ESConnection")
svc.add_connection(es_connection)

Construct and register Pipeline
pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)

app.run()

It is important to include “ESConnection” as a parameter in ElasticSearch connection and source methods.

Elastic Search Sink

You can use Elastic Search sink to store data for further analysis or visualizations using Kibana.

Prerequisites

The process to create ES sink is simple and intuitive but you will need few things to start with.

What you will need:

1. URL address for connection with Elastic Search

2. Configuration file

3. Register the service of ESConnection

Configuration File

you will need to create .conf file using following syntax

Elasticsearch connection
[connection:ESConnection]
url=<<YOUR CONNECTION URL>>

Elasticsearch sink
[pipeline:<<Name of your pipeline class>>:ElasticSearchSink]
index=<<name of your index>>
doctype=_doc

The configuration file can contain additional information depending on your implementation. It is essential to include:

• index : name of the index that will be used to store your data in ES

• url : URL of your connection with ES

• doctype : type of the document, default is _doc

2.2. Bitswan Tutorials 25

BSPump Reference Documentation Documentation, Release v1903

For more information visit our quickstart to using configs: Configuration Quickstart.

Code example

To create a connection with Elastic Search you will need to do two things:

1. Add ElasticSearchSink component to self.build method of the pipeline class

2. create a service of your ES Connection.

You can implement your own ElasticSearch connection but the default connection will look like this:

import bspump.elasticsearch

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

#Rest of the pipeline with source and processors
#Adding ES Sink component
bspump.elasticsearch.ElasticSearchSink(app, self, "ESConnection"),

)

if __name__ == '__main__':
app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")

#Part where you add the ESConnection service
es_connection = bspump.elasticsearch.ElasticSearchConnection(app, "ESConnection")
svc.add_connection(es_connection)

svc.add_connection(
bspump.kafka.KafkaConnection(app, "KafkaConnection")

)

app.run()

It is important to include “ESConnection” as a parameter in ElasticSearch connection and sink methods.

2.2.6 Escape From Tarkov Craft Profit Counter

About

Pipeline in this example is inspired by game Escape from Tarkov. It is a realistic FPS game. Beside shooting enemies,
Players can earn and sell items in a game market which is driven by players themselves. The price of each item is
changing in real-time based on Demand-supply mechanics. Another important game mechanic is that players can
create the items themself in their specific stations. Items created and required for each crafts can be bought on the
market, so players can earn in-game money by producing the items. Because price of each item is not stable, some
crafts are more profitable than others. My idea was to take data from an API source that gives information of all
available crafts players can do together with price of each item. I will use this data to sort and analyze the data and
output them in form that might help players know which crafts is more profitable and suitable.

26 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

In this example I will show you a process of creating pipeline with a bit more complicated use. You will learn about
creating a source that enables us to use query in our API requests.

Source

First we have to create our source to pump the data to the pipeline. We will be using aiohttp library for our custom
source. We will start by creating our source class. As you can see in the code below.

class IOHTTPSource(bspump.TriggerSource):
def __init__(self, app, pipeline, choice=None, id=None, config=None):

super().__init__(app, pipeline, id=id, config=config)

async def cycle(self):
async with aiohttp.ClientSession() as session:

async with session.post('https://tarkov-tools.com/graphql', json={'query':␣
→˓query}) as response:

if response.status == 200:
event = await response.json()

else:
raise Exception("Query failed to run by returning code of {}. {}".

→˓format(response.status, query))
await self.process(event)

As you can see in the cycle method. We are using asynchronous functions for the API requests. As you can see in the
code I am creating Session which is used in aiohttp for more information check AIOHTTP Documentation. I am using
post method with a query parameter as seen below.

query = """
query {
crafts {
source
duration
rewardItems {
quantity
item {
shortName
lastLowPrice

}
}
requiredItems {
quantity
item {
shortName
lastLowPrice

}
}

}
}
"""

I created this query using playground interface made by the API authors. Here is the link if you would like to use this
API.

Now you can try to copy-paste the code below and try it for yourself.

2.2. Bitswan Tutorials 27

https://docs.aiohttp.org/en/stable/client_reference.html#basic-api
https://tarkov-tools.com/___graphql

BSPump Reference Documentation Documentation, Release v1903

#!/usr/bin/env python3
import aiohttp
import bspump
import bspump.common
import bspump.http
import bspump.trigger
import pandas as pd
import bspump.file

query = """
query {
crafts {
source
duration
rewardItems {
quantity
item {
shortName
lastLowPrice

}
}
requiredItems {
quantity
item {
shortName
lastLowPrice

}
}

}
}
"""

class IOHTTPSource(bspump.TriggerSource):
def __init__(self, app, pipeline, choice=None, id=None, config=None):

super().__init__(app, pipeline, id=id, config=config)

async def cycle(self):
async with aiohttp.ClientSession() as session:

async with session.post('https://tarkov-tools.com/graphql', json={'query':␣
→˓query}) as response:

if response.status == 200:
event = await response.json()

else:
raise Exception("Query failed to run by returning code of {}. {}".

→˓format(response.status, query))
await self.process(event)

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

(continues on next page)

28 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

self.build(
IOHTTPSource(app, self).on(bspump.trigger.PeriodicTrigger(app, 5)),
bspump.common.PPrintProcessor(app,self),
bspump.common.NullSink(app, self),

)

If everything works correctly, you should be getting similar output.

'source': 'Workbench level 3'},
{'duration': 60000,
'requiredItems': [{'item': {'lastLowPrice': 39000,

'shortName': 'Eagle'},
'quantity': 2},
{'item': {'lastLowPrice': 15000,

'shortName': 'Kite'},
'quantity': 2}],

'rewardItems': [{'item': {'lastLowPrice': None,
'shortName': 'BP'},

'quantity': 120}],
'source': 'Workbench level 3'},
{'duration': 61270,
'requiredItems': [{'item': {'lastLowPrice': 15000,

'shortName': 'Kite'},
'quantity': 2},
{'item': {'lastLowPrice': 39000,

'shortName': 'Eagle'},
'quantity': 2},
{'item': {'lastLowPrice': 31111,

'shortName': 'Hawk'},
'quantity': 2}],

'rewardItems': [{'item': {'lastLowPrice': None,
'shortName': 'PPBS'},

'quantity': 150}],
.
.
.

There are probably hundreds of JSON lines in your console right now. It is not a nice way to output your data right?
Let’s implement our filter processor then.

Filter Processor

This filter processor is used for very specific use-case in this example. The goal as you can remember was to filter
incoming data. The goal is to create a dataframe that contains data where each row has information about station in
which the craft is created, duration of the craft ,price of items needed to perform the craft, name and price of item/s
that we obtain by the craft, profit of the craft, and profit per hour. As you can see there is a lot of indexes we have to
create.

class FilterByStation(bspump.Processor):
def __init__(self, app, pipeline, id=None, config=None):

super().__init__(app, pipeline, id=None, config=None)

(continues on next page)

2.2. Bitswan Tutorials 29

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

def process(self, context, event):
my_columns = ['station', 'name', 'output_price_item', 'duration', 'input_price_

→˓item', 'profit', 'profit_per_hour']
df = pd.DataFrame(columns=my_columns)
for item in event["data"]["crafts"]:

duration = round((item["duration"])/60/60, ndigits=3)
reward = item["rewardItems"][0]
name_output = reward["item"]["shortName"]
quantity = reward["quantity"]
output_item_price = reward["item"]["lastLowPrice"]
if output_item_price is None: # checks for NULL values

output_item_price = 0
output_price_item = quantity * int(output_item_price)
station_name = item["source"]
profit = 0
profit_p_hour = 0
input_price_item = 0
for item2 in range(len(item["requiredItems"])):

required_item = item["requiredItems"][item2]
quantity_i = required_item["quantity"]
input_item = required_item["item"]["lastLowPrice"]
if input_item is None:

input_item = 0
price_of_input_item = input_item * quantity_i
input_price_item = input_price_item + price_of_input_item
profit = output_price_item - input_price_item
profit_p_hour = round(profit / duration, ndigits=3)

df = df.append(
pd.Series([station_name,

name_output,
output_price_item,
duration,
input_price_item,
profit,
profit_p_hour],
index=my_columns), ignore_index=True)

event = df
return event

You can copy-paste the code above and everything should work just fine. Don’t forget to reference the processor in the
self.build() method.

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
IOHTTPSource(app, self).on(bspump.trigger.PeriodicTrigger(app, 5)),
FilterByStation(app, self),
bspump.common.PPrintProcessor(app, self),
bspump.common.NullSink(app, self),

(continues on next page)

30 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

)

If you want more detail of what it does. It firstly goes through the whole json, then it gets data for each of the index if
possible (otherwise zero is used instead of null), and appends the record as a row in our dataframe. I am using Pandas
in this example. If you are not familiar with Pandas make sure you checked their Documentation

Now output in your console should like like this:

station name output_price_item duration input_price_
→˓item profit profit_per_hour
0 Booze generator level 1 Moonshine 286999 3.056 ␣
→˓236998 50001 16361.584
1 Intelligence Center level 2 Flash drive 180000 34.222 ␣
→˓151498 28502 832.856
2 Intelligence Center level 2 Virtex 88000 37.611 ␣
→˓210993 -122993 -3270.134
3 Intelligence Center level 2 SG-C10 130000 38.889 ␣
→˓206978 -76978 -1979.429
4 Intelligence Center level 2 RFIDR 215000 53.333 ␣
→˓40000 175000 3281.271
..
→˓.
128 Workbench level 3 PBP 0 11.972 ␣
→˓265888 -265888 -22209.155
129 Workbench level 3 M995 0 15.994 ␣
→˓211000 -211000 -13192.447
130 Workbench level 3 M61 0 16.644 ␣
→˓233331 -233331 -14018.926
131 Workbench level 3 BP 0 16.667 ␣
→˓108000 -108000 -6479.870
132 Workbench level 3 PPBS 0 17.019 ␣
→˓170222 -170222 -10001.880

[133 rows x 7 columns]

We can agree that this looks much more better than raw JSON, but this is not the end we still need to send the data
somewhere for out bot

Dataframe to csv Processor

To make the data available for our Discord bot, we will save them to a directory as a csv file. This processor is really
simple as we call only one function from the Pandas library.

You can copy paste the code of the processor

class DataFrameToCSV(bspump.Processor):
def __init__(self, app, pipeline, id=None, config=None):

super().__init__(app, pipeline, id=None, config=None)

def process(self, context, event):
event.to_csv('./Data/TarkovData.csv', index=False)
return event

2.2. Bitswan Tutorials 31

https://pandas.pydata.org/docs/

BSPump Reference Documentation Documentation, Release v1903

Once again dont forget to include the processor in our self.build() method.

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
IOHTTPSource(app, self).on(bspump.trigger.PeriodicTrigger(app, 5)),
FilterByStation(app, self),
bspump.common.PPrintProcessor(app, self),
DataFrameToCSV(app, self),
bspump.common.NullSink(app, self),

)

This wont change our output in console, but it should create a csv file in your current directory.

What next

Now we have a function pipeline. You can do anything with the output data. For example, I created a simple discord
bot that sends a message with the updated data you can try to make your own discord bot using this tutorial: Getting
Started with Discord Bots.

2.2.7 Fortnite Current Store Example

About

In this example we will get data from one HTTP course using an API request and use filtering processors on those datas
and export the data to .csv file which can be used for example for Discord bot.

The final pipeline will get data form API request, filter some values from dataframe, does some calculation with values
and then export it to CSV file.

We will be using API from Fortnite Tracker to get current Fortnite store items.

We will work with configuration files in this example. If you already doesn’t know how to work with configuration files
try this quickstart Configuration Quickstart.

A diagram of the finished pipeline

32 Chapter 2. How to install BitSwan

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/
https://fortnitetracker.com/site-api

BSPump Reference Documentation Documentation, Release v1903

First sample pipeline

In the code below you can see the structure of SamplePipeline which we need for this use case. The important part
is the self.build() method where its parameters are the single components of the pipeline. Do not forget that every
pipeline requires both source and sink to function correctly.

Source is a component that supply the pipeline with data. In our example we will use a specific type of source. Because
we need to Pump data from API, we need to send request to the API to receive our data. This means that our source
has to be “trigger” the request and send it to the API. For this reason we will be using a so-called trigger source. More
about Trigger Source.

Because we are using Trigger Source. We need to specify which trigger we will be using. There are more types of
triggers, but in our example we will be using PeriodicTrigger, which triggers in time intervals specified in the parameter.
bspump.trigger.PeriodicTrigger(app, <<Time parameter in seconds>>))

Each pipeline requires a sink. We will use PPrintSink for now to see incoming data. But in the next steps we will be
using NullSink which I describe later.

First we need to create configuration file. Create config.conf file in your pump folder. To this configuration file
copy-paste this chunk of code and rewrite <YOUR PRIVATE API> section with your API key which you will get by
following steps here

[pipeline:SamplePipeline]
url = https://api.fortnitetracker.com/v1/store
api_key = <YOUR PRIVATE API KEY>

After you have your configuration file finished you can copy-paste code below and try it yourself. Be sure you have
BSPump module installed. If not follow our guide Installing BSPump module

import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):
(continues on next page)

2.2. Bitswan Tutorials 33

https://fortnitetracker.com/site-api

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

bspump.http.HTTPClientSource(app, self,
config={'url': self.Config['url']},
headers={'TRN-Api-Key': self.Config['api_key']}).on(bspump.trigger.

→˓PeriodicTrigger(app, 2)),
bspump.common.PPrintSink(app, self),

)

if __name__ == '__main__':
app = bspump.BSPumpApplication()

svc = app.get_service("bspump.PumpService")

Construct and register Pipeline
pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)

app.run()

You can run this code with ~ python3 yourpumpname.py -c config.conf command in terminal.

Well done! Now we are pumping data about items which are in Fortnite store right now.

You should get output like this:

~ python3 docs1.py -c config.conf
BitSwan BSPump version 21.11-17-g6b346fd
04-Feb-2022 18:00:30.503021 NOTICE asab.application is ready.
1 pipeline(s) ready.
(b'[\r\n {\r\n "imageUrl": "https://trackercdn.com/legacycdn/fortnite/8BD06'
b'909_large.png",\r\n "manifestId": 6909,\r\n "name": "Marsh Walk",\r'
b'\n "rarity": "Sturdy",\r\n "storeCategory": "BRSpecialFeatured",\r'
b'\n "vBucks": 500\r\n },\r\n {\r\n "imageUrl": "https://trackercdn.c'
b'om/legacycdn/fortnite/275915210_large.png",\r\n "manifestId": 15210,\r\n '
b' "name": "Arcane Vi",\r\n "rarity": "Epic",\r\n "storeCategory": "BR'
b'SpecialFeatured",\r\n "vBucks": 0\r\n },\r\n {\r\n "imageUrl": "http'
b's://trackercdn.com/legacycdn/fortnite/2AC415212_large.png",\r\n "manife'
b'stId": 15212,\r\n "name": "Piltover Warden Hammer",\r\n "rarity": "Epi'
b'c",\r\n "storeCategory": "BRSpecialFeatured",\r\n "vBucks": 800\r\n '
b' },\r\n {\r\n "imageUrl": "https://trackercdn.com/legacycdn/fortnite/6C4'
b'015364_large.png",\r\n "manifestId": 15364,\r\n "name": "Marsha",\r'
b'\n "rarity": "Epic",\r\n "storeCategory": "BRSpecialFeatured",\r\n '
b' "vBucks": 1500\r\n },\r\n {\r\n "imageUrl": "https://trackercdn.co'
b'm/legacycdn/fortnite/46F66923_large.png",\r\n "manifestId": 6923,\r\n '
b'"name": "Marshmello",\r\n "rarity": "Quality",\r\n "storeCategory": "B'
b'RSpecialFeatured",\r\n "vBucks": 1500\r\n },\r\n {\r\n "imageUrl": "'
b'https://trackercdn.com/legacycdn/fortnite/B84F13565_large.png",\r\n "ma'
b'nifestId": 13565,\r\n "name": "Arcane Jinx",\r\n "rarity": "Epic",'
b'\r\n "storeCategory": "BRSpecialFeatured",\r\n "vBucks": 0\r\n },\r\n'
b' {\r\n "imageUrl": "https://trackercdn.com/legacycdn/fortnite/61841528'

(continues on next page)

34 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

b'7_large.png",\r\n "manifestId": 15287,\r\n "name": "Goblin Glider"'
b',\r\n "rarity": "Epic",\r\n "storeCategory": "BRSpecialFeatured",\r'
b'\n "vBucks": 800\r\n },\r\n ...

Export to CSV

Awesome! Now we are pumping data but we want to store them somewhere. In the end we want to create Discord Bot
which will show us current Fortnite Store when we write command to discord chat. Discord bot can work easily with
CSV file so we need to export our data do .csv file.

We have to import pandas library to our pump which can export JSON file to CSV file and then we define our exporting
processor.

The processor convert JSON file to dataframe with pandas library and then export it as CSV file and create specified
file in same folder like our pump (you can define path you want).

This will be our processor:

class JSONtoCSV(bspump.Processor):

def process(self, context, event):
df = pd.read_json(event)
event = df.to_csv('data.csv', index=False)
return event

Now we add this processor to our pump, we have to change PPrintSink to NullSink because we don’t want to store or
print data anywhere, we will have it in our CSV file.

You can copy-paste code below and look into your pump folder if there is a CSV file with our data.

import bspump
import bspump.common
import bspump.http
import bspump.trigger
import pandas as pd

class JSONtoCSV(bspump.Processor):

def process(self, context, event):
df = pd.read_json(event)
event = df.to_csv('data.csv', index=False)
return event

class SamplePipeline(bspump.Pipeline):
def __init__(self, app, pipeline_id):

super().__init__(app, pipeline_id)

self.build(
bspump.http.HTTPClientSource(app, self,
config={'url': self.Config['url']},
headers={'TRN-Api-Key': self.Config['api_key']}).on(bspump.trigger.

→˓PeriodicTrigger(app, 2)),
JSONtoCSV(app, self),

(continues on next page)

2.2. Bitswan Tutorials 35

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

bspump.common.NullSink(app, self),
)

if __name__ == '__main__':
app = bspump.BSPumpApplication()

svc = app.get_service("bspump.PumpService")

Construct and register Pipeline
pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)

app.run()

The CSV file should looks this way:

36 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Processor with pandas script

You can see that in our data set there aren’t so many interesting datas. So we want to add column with coefficient of price
over rarity which will be useful in our Discord bot, because player could know which items is the most advantageous
for purchase.

We create basic pandas script to go through rows and calculate the coefficient from rarity and vBucks column values
and then add to list which will create new column called Coef at the end. More about pandas here

You have to convert the dataframe back to JSON file, because pipeline can’t work with dataframes.

The processor:

2.2. Bitswan Tutorials 37

https://pandas.pydata.org/docs/

BSPump Reference Documentation Documentation, Release v1903

class AddRarityPriceCoef(bspump.Processor):

def process(self, context, event):
df = pd.read_json(event)
coefs = []
for row in df.itertuples():

if row.vBucks == 0:
price = 1

else:
price = row.vBucks

if row.rarity.lower() == 'handmade':
coefs.append((1/price)*100)

elif row.rarity.lower() == 'uncommon':
coefs.append((2/price)*100)

elif row.rarity.lower() == 'rare':
coefs.append((3/price)*100)

elif row.rarity.lower() == 'epic':
coefs.append((4/price)*100)

elif row.rarity.lower() == 'legendary':
coefs.append((5/price)*100)

elif row.rarity.lower() == 'mythic':
coefs.append((6/price)*100)

elif row.rarity.lower() == 'exotic':
coefs.append((7/price)*100)

else:
coefs.append(1)

df['Coef'] = coefs
event = df.to_json()
return event

Now we add the processor to our pump and after you copy-paste the code and run the pump you can see that the new
column was added with our calculated values.

#!/usr/bin/env python3

import bspump
import bspump.common
import bspump.http
import bspump.trigger
import pandas as pd

class JSONtoCSV(bspump.Processor):

def process(self, context, event):
df = pd.read_json(event)
print(df)
event = df.to_csv('data.csv', index=False)
return event

class AddRarityPriceCoef(bspump.Processor):

(continues on next page)

38 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

def process(self, context, event):
df = pd.read_json(event)
coefs = []
for row in df.itertuples():

if row.vBucks == 0:
price = 1

else:
price = row.vBucks

if row.rarity.lower() == 'handmade':
coefs.append((1/price)*100)

elif row.rarity.lower() == 'uncommon':
coefs.append((2/price)*100)

elif row.rarity.lower() == 'rare':
coefs.append((3/price)*100)

elif row.rarity.lower() == 'epic':
coefs.append((4/price)*100)

elif row.rarity.lower() == 'legendary':
coefs.append((5/price)*100)

elif row.rarity.lower() == 'mythic':
coefs.append((6/price)*100)

elif row.rarity.lower() == 'exotic':
coefs.append((7/price)*100)

else:
coefs.append(1)

df['Coef'] = coefs
event = df.to_json()
return event

class SamplePipeline(bspump.Pipeline):
def __init__(self, app, pipeline_id):

super().__init__(app, pipeline_id)
self.build(

bspump.http.HTTPClientSource(app, self,
config={'url': self.Config['url']},
headers={'TRN-Api-Key': self.Config['api_key']}).on(bspump.trigger.

→˓PeriodicTrigger(app, 2)),
Add price over rarity coefficient to dataframe
AddRarityPriceCoef(app, self),
Converts incoming json event to CSV data
JSONtoCSV(app, self),
We can also push datas to ES or Kafka
bspump.common.NullSink(app, self),

)

if __name__ == '__main__':
app = bspump.BSPumpApplication()

svc = app.get_service("bspump.PumpService")

Construct and register Pipeline

(continues on next page)

2.2. Bitswan Tutorials 39

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)

app.run()

Data in CSV file:

40 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Conclusion

So, in this example we learnt how to get data from basic API request and export it to CSV file. Then we create script
with pandas library to make price over rarity coefficient and add it as a new column to our dataset. You can also add
some other processors which can filter data or make some calculation over the datas.

What next?

Now I will show you how can you use the pump to create your Discord bot for yourself or your friends.

You can find how to create Discord bot here

The following discord bot can looks like this:

2.2.8 Install ElasticSearch and Kibana via Docker

About

This example is focused on how to install ElasticSearch and Kibana on your localhost and use the ES via Kibana GUI.
We will be using Docker and Docker compose to install ElasticSearch environment. Be sure you have set up Docker
and Docker compose, if not follow this guide to install Docker and Docker compose.

In the end we use Docker image of our Weather Pump, which can be found here Weather API Example, to pump data
to index in our local ElasticSearch.

Docker is a platform which provides the ability to package and run an application in a loosely isolated environment
called a container. More about Docker you can also read our quickstart how to use Docker with BSPump module here:
Docker File Quickstart

Docker compose is a tool for defining and running multi-container Docker applications. More about Docker compose.

Docker compose with ES and Kibana

Now we create Docker compose file to run ElasticSearch and Kibana on our localhost. Create docker-compose.yml
file in your specified folder. In docker compose you have to define your services which you want to use. In our case
we define elasticsearch and kibana. We choose which image of ES and Kibana we want to use. The image will
automatically download from official Docker hub of Elastic. Then we set a names of container and set a condition
when the container restart after unexpected exit. In next step we set the environment of container. In this case we
don’t want to have security, we will have just one ElasticSearch single-node and we set up a connection between ES
and Kibana in ELASTICSEARCH_HOSTS. Volumes is where the data will be stored in container file system. And in the
end we specified on which localhost port container will be running. You can also set that one service will be wait for
another in depends_on.

Just copy-paste this chunk of code into your docker-compose.yml file:

version: '3.9'
services:
Elastic Search single node cluster
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:8.0.0
container_name: elasticsearch
restart: always

(continues on next page)

2.2. Bitswan Tutorials 41

https://realpython.com/how-to-make-a-discord-bot-python/
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/compose/

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

environment:
- xpack.security.enabled=false
- discovery.type=single-node

volumes:
- elasticsearch-data-volume:/usr/share/elasticsearch/data/

ports:
- 9200:9200
- 9300:9300

Kibana UI for Elastic Search
kibana:
image: docker.elastic.co/kibana/kibana:8.0.0
container_name: kibana
restart: always
environment:
- ELASTICSEARCH_HOSTS=http://elasticsearch:9200

ports:
- 5601:5601

depends_on:
- elasticsearch

volumes:
elasticsearch-data-volume:
driver: local

Now when we have defined your docker compose file we can try to run our first Docker compose app. Be sure you are in
same folder like your docker-compose file and type ~ docker compose up -d into terminal. The -d flag means that
your app will be running in detached mode. You can check if all containers are running with docker ps command.

You should see this:

You can also enter the Kibana GUI. Go to your browser and type localhost:5601 into search bar. You can see that
you type localhost port which we define in the docker compose file.

Wow! If everything is okay you will see this:

42 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Run Weather pump to pump data to Elastic Search index

Well done! We installed ElasticSearch and Kibana locally and we are able to access the ElasticSearch with Kibana
GUI. Now we can try to run pump which take weather data and we store them in Elasticsearch index. We already build
Weather pump image so you basically pull the image from Docker hub and run it.

To do it simply run this command in your terminal:

~ docker run --network=host -dit lukasvecerka/bspump-weather

You have to set --network=host which mean that your container can now access the localhost on your host machine.

If you type docker ps the incoming output in terminal should be this:

Now go to this url address. Its page of Index Management where you can see all of your stored indexes.

If your containers are running correctly you can see that there is index called weather-pump-test. This is the index
where we store data from our weather pump.

2.2. Bitswan Tutorials 43

http://localhost:5601/app/management/data/index_management/indices

BSPump Reference Documentation Documentation, Release v1903

Summarize

That’s all for this example! In this example we learnt how to work with Docker and especially with Docker compose
tool. How to set services in our application in Docker compose. As conclusion we installed ElasticSearch and Kibana
locally and pump data on index in ElasticSearch with our pump.

What next

In the future you can add more services into your docker compose application and extend your environment with this
services. You can build your own Docker image and push it to Docker hub and then use it in your docker compose.

More about how to create BSPump Docker image is here Docker File Quickstart

2.2.9 Install Kafka and KafDrop via Docker

About

This example is focused on how to install Kafka nad KafDrop on your localhost and search topics from Kafka in
KafDrop. We will be using Docker and Docker Compose to install ElasticSearch environment. Be sure you have set
up Docker and Docker Compose. If not follow this guide to install Docker and Docker compose.

In the end we will use Docker image of our Coindesk API pump, which can be found here coindesk, to pump data to
topic in our local Kafka.

44 Chapter 2. How to install BitSwan

https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/

BSPump Reference Documentation Documentation, Release v1903

Docker is a platform which provides the ability to package and run an application in a loosely isolated environment
called a container. More about Docker.

You can also read our quickstart how to use Docker with BSPump module here: Docker File Quickstart

Docker compose is a tool for defining and running multi-container Docker applications. More about Docker compose.

Docker compose with Kafka and KafDrop

Now we create Docker Compose file to run Kafka and KafDrop on our localhost. Create docker-compose.yml file
in our desired folder. In docker compose you have to define your services which you want to use. Each service is
one container which will be running. In our case we define zookeeper, kafka and kafdrop. ZooKeeper is essen-
tially a service for distributed systems offering a hierarchical key-value store, which is used to provide a distributed
configuration service, synchronization service, and naming registry for large distributed systems.

Services are consist of these values:

1. image: we choose which image will be download from DockerHub (after we run the docker compose its auto-
matically pull the image)

2. hostname: name of service in multi-container network

3. ports: specified ports where the container will runs

4. environments: setting up the services configuration (e.g. Kafka Broker ID etc.)

5. depends_on: service will wait until specified service in depends_on will start

6. restart: service try to restart after unexpected end

Just copy-paste this chung od code into you docker-compose.yml file:

version: '3.9'
services:
zookeeper:
image: zookeeper:3.4.9
hostname: zookeeper
ports:
- "2181:2181"

environment:
ZOO_MY_ID: 1
ZOO_PORT: 2181
ZOO_SERVERS: server.1=zookeeper:2888:3888

volumes:
- /data/zookeeper/data:/data
- /data/zookeeper/datalog:/datalog

kafka1:
image: confluentinc/cp-kafka:5.3.0
hostname: kafka1
ports:
- "9092:9092"

environment:
KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka1:19092,LISTENER_

→˓DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_

→˓DOCKER_EXTERNAL:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL

(continues on next page)

2.2. Bitswan Tutorials 45

https://docs.docker.com/get-started/overview/
https://docs.docker.com/compose/

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

KAFKA_ZOOKEEPER_CONNECT: "zookeeper:2181"
KAFKA_BROKER_ID: 1
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1

volumes:
- /data/kafka1/data:/var/lib/kafka/data

depends_on:
- zookeeper

kafdrop:
image: obsidiandynamics/kafdrop
restart: "no"
ports:
- "9000:9000"

environment:
KAFKA_BROKERCONNECT: "kafka1:19092"

depends_on:
- kafka1

Now when we have defined your docker compose file we can try to run our first Docker compose app. Be sure you are
in same folder like your docker-compose file and type ~ docker compose up -d into terminal. The -d flag means
that your app will be running in detached mode. You have to wait little bit when all the images is pulled. After that you
can check if all containers are running with docker ps command.

You should see this:

You can also enter the KafDrop. Go to your browser and type localhost:9000 to the search bar. You can see that
you specify the port that we setup in docker compose.

Wow! If everything work correctly you can see thin page:

46 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Pump data to Kafka topic

Well done! We’ve installed Kafka and KafDrop locally and we are able to see topics in KafDrop. Now we can try to
run pump which take data from CoinDesk API and store them in Kafka topic. We already build the Coindesk pump
image so you basically use the image and run it.

Simply type this command to your terminal and we will see what’s happen.

~ docker run --network=host -dit lukasvecerka/bspump-kafkasink-example

You have to set --network=host which mean that your container can now access the localhost on your host machine.

Now when you look into KafDrop you can see coindesk-data topic:

2.2. Bitswan Tutorials 47

BSPump Reference Documentation Documentation, Release v1903

You can look on messages which you pump to this topic. Just click on topic name, then on View Messages and again
on View Messages and you should see something like this:

48 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Summarize

That’s all for this example! In this example we learnt how to work with Docker and especially with Docker compose
tool. We learnt how to set services in our application in Docker compose. In the end we installed Kafka, Zookeeper
and KafDrop locally and we run pump with Docker container to pump data to Kafka topic.

What next

In the future you can add more services into your docker compose application nad extend your environment with this
services. You can build your own Docker image and push it to Docker hub and then use it in your docker compose or
simply run it as a container.

More about how to create BSPump Docker image is here Docker File Quickstart

2.2. Bitswan Tutorials 49

BSPump Reference Documentation Documentation, Release v1903

2.2.10 Docker File Quickstart

About

This tutorial will help you to create your own Docker image for your pipeline. First things first, I would recommend
you to go through Docker Documentation if this is your first time with Docker.

quickstart to docker

Docker can help you with deployment of your app on other devices. Everything you need to do is to setup docker one
device and then it works on every other device. Firstly you have to create docker image for you application. In our case
we will create image for our BS Pipeline. To do that we have to firstly create a docker file for our pipeline.

We will be using code from one of our examples coindesk. You can simply copy paste the code and everything should
be working if you have a bspump python module installed

docker file

Creating a docker file is very easy thing to do. You have only copy-paste the code below

FROM teskalabs/bspump:nightly

WORKDIR /opt/coindesk

COPY coindesk.py ./coindesk.py

CMD ["python3", "coindesk.py"]

To explain what is does:

1. keyword FROM specifies what docker image you are using. In this case we will be using a “preset” for a bspump.
This image is running on Alpine linux and has all libraries installed.

2. WORKDIR specifies the name of your working directory to where other files will be copied

3. COPY this command is used to copy any files you will be using including the source code of your app.

4. CMD is a command for running commands in your container. You have to write a command sequence as a list where
each element is one word of the command. In our case we want to execute our program using python3 coindesk.py

Creating docker image

To build your docker image use this command. Make sure to use -t switch and match <<your docker nickname>> to
your docker login name. This must match for successful push of the image to the docker desktop.

docker build -t <<your docker nickname>>/<<name of your image>> .

Now you can try to run your docker image using:

docker run -it <<your docker nickname>>/<<name of your image>>

now your container should be running in your console. If you want to terminate it open another console and type

docker ps

50 Chapter 2. How to install BitSwan

https://docs.docker.com/get-started/

BSPump Reference Documentation Documentation, Release v1903

This command will show you all your running containers and with

docker kill <<CONTAINER ID>>

It will terminate the container. Container ID should be found next to the running image after typing docker ps

If you want to see all containers that were initiated type

docker ps -a

Now if you want to use this image from other devices for docker compose for example. You can push the image to your
repository using:

docker push <<your docker nickname>>/<<name of your image>>

if you haven’t tagged your container before use

docker tag <<name of your image>> <<your docker nickname>>/<<name of your image>>

Now you should have running docker container and you know how to push it to your docker hub. If you are still not
sure how to use docker I would recommend to check docker documentation once again. Docker is not complicated, but
it takes some time to get used to it.

additional commands

TODO

what next

if you have successfully created your own docker image you can try to connected your pipeline with other technologies
like elastic search or kafka. Check our Install ElasticSearch and Kibana via Docker for working with docker compose.

2.2.11 WebSocket Example

This example will show you how can you can connect two pipelines connection using socket server connection.

what is socket

Socket is a peer-to-peer connection between two computers. You can imagine it like two computers have access to one
directory and can share data between each other.

explain server/client consumer/producer

The pipeline you will create can be either a server or a client. Server is a script that listens on a certain IP address and
port, client is the one who “connects” to a certain port of the server. Both client and server can be either consumers,
meaning that consumer (consumes) the data, and producer is the one who produce the data. The specific combination
of server/client consumer/producers mainly depends on what do you wanna do. In this example we will show both
server/consumer - client/producer type of connection and server/producer - client/consumer connection.

2.2. Bitswan Tutorials 51

BSPump Reference Documentation Documentation, Release v1903

Server consumer

Server consumer means that this pipeline will be waiting for any client trying to make a connection and if there is a
connection with a client the server will get the incoming data into its pipeline. This server pipeline will use Websocket
Source as its Source.

To create this kind of pipeline we have to use our WebSocketSource and specify the address and port on which it will
listen for any possible connections. In this example we will run both pipelines on localhost, so you do not have to waste
your time setting up your own network.

#!/usr/bin/env python3
import bspump
import bspump.common
import bspump.web
import bspump.http

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.http.WebSocketSource(app, self),
bspump.common.PPrintSink(app, self)

)

if __name__ == '__main__':
app = bspump.BSPumpApplication(web_listen="0.0.0.0:8080") #set web_listen variable␣

→˓to the address you want

svc = app.get_service("bspump.PumpService")

Construct and register Pipeline
pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)

#you have to use add_get method to set up address using the handler.
app.WebContainer.WebApp.router.add_get('/bspump/ws', pl.WebSocketSource.handler)

app.run()

You can copy-paste the code above. The pipeline is really simple the only thing you have to do is to add WebSocket
Source. Just make sure to set up the web_listen variable in the BSPumpApplication object, and do not forget that
you have to call the add_get method TODO
Now you can run the script and your server should be running listening for any possible connections.

52 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Client producer

We have a running server, so now we have to create a client that can connect to the server and feed it with the data.

#!/usr/bin/env python3
import bspump
import bspump.common
import bspump.http
import bspump.trigger

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.Counter = 1

self.Source = bspump.common.InternalSource(app, self)

self.build(
bspump.http.HTTPClientSource(app, self, config={

'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
Trigger that triggers the source every second (based on the method␣

→˓parameter)
}).on(bspump.trigger.PeriodicTrigger(app, 5)),

bspump.http.HTTPClientWebSocketSink(app, self, config={
'url': 'http://127.0.0.1:8080/bspump/ws',

})

)

if __name__ == '__main__':
app = bspump.BSPumpApplication()

svc = app.get_service("bspump.PumpService")

Construct and register Pipeline
pl = SamplePipeline(app, 'SamplePipeline')
svc.add_pipeline(pl)

app.run()

Creating the client is much more easier than the server. All you have to do is to use HTTPClientSocketSink with
config where you specify the url of the server you want to connect to. In this case it is http://127.0.0.1:8080/
bspump/ws

2.2. Bitswan Tutorials 53

BSPump Reference Documentation Documentation, Release v1903

what next

This example should have you given an idea how to use and connect pipelines using socket connection.

2.2.12 Blank App

In this tutorial you will learn how divide a pipeline into several file components. This approach is beneficial for creating
more advanced pipelines as you can use some of the components without the need of copy pasting code. It is also much
more clear. This is a general guide so you can apply this structure to your pipeline. We will be using so-called blank
app in this tutorial for simplicity you can find the code here.

In this tutorial we will use code from our previous tutorial coindesk, but don’t worry once you create this structure it is
easy to make changes for your own pipeline.

first you will create similar file hierarchy like on this image.

pipeline

In this file you will have your pipelien with self.build method. If you want to use your own processors, sources or
sinks you have to import them from another file. In this example I want to use my processor for coindesk, so I have to
use

from .processor import EnrichProcessor

and then I can reference it in self.build method.

import bspump
import bspump.common
import bspump.http
import bspump.trigger

from .processor import EnrichProcessor

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
(continues on next page)

54 Chapter 2. How to install BitSwan

https://github.com/LibertyAces/BitSwanPump-BlankApp

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

Source that GET requests from the API source.
bspump.http.HTTPClientSource(app, self, config={

'url': 'https://api.coindesk.com/v1/bpi/currentprice.json'
Trigger that triggers the source every second (based on the method␣

→˓parameter)
}).on(bspump.trigger.PeriodicTrigger(app, 5)),
Converts incoming json event to dict data type.
bspump.common.StdJsonToDictParser(app, self),
Adds a CZK currency to the dict
EnrichProcessor(app, self),
bspump.common.StdDictToJsonParser(app,self),
prints the event to a console
bspump.common.PPrintSink(app, self),

)

Only remember that name of your pipeline (the name of the class) will be used in other files.

processor

To create processor file you can simply copy-paste your processor class.

note
Do not forget to import bspump module, so your processor can function normally.

import bspump

class EnrichProcessor(bspump.Processor):
def __init__(self, app, pipeline, id=None, config=None):

super().__init__(app, pipeline, id=None, config=None)

def convertUSDtoJPY(self, usd):
return usd * 113.70 # outdated rate usd/jpy

def process(self, context, event):
jpyPrice = str(self.convertUSDtoJPY(event["bpi"]["USD"]["rate_float"]))

event["bpi"]["JPY"] = {
"code": "JPY",
"symbol": "¥",
"rate": ''.join((jpyPrice[:3], ',', jpyPrice[3:])),
"description": "JPY",
"rate_float": jpyPrice

}

return event

2.2. Bitswan Tutorials 55

BSPump Reference Documentation Documentation, Release v1903

service

In service you have to register your pipeline. You can also register more pipelines.

note
Remember to import your pipeline class here, so you can register the pipeline.

import asab

from .pipeline import SamplePipeline

class BlankService(asab.Service):

def __init__(self, app, service_name="blank.BlankService"):
super().__init__(app, service_name)

async def initialize(self, app):
svc = app.get_service("bspump.PumpService")

Create and register all connections here

Create and register all matrices here

Create and register all lookups here

Create and register all pipelines here

self.SamplePipeline = SamplePipeline(app, "SamplePipeline")
svc.add_pipeline(self.SamplePipeline)

await svc.initialize(app)

self.SamplePipeline = SamplePipeline(app, "SamplePipeline")
svc.add_pipeline(self.SamplePipeline)

These two lines of the code register your pipeline.

module

In module you create a module of your service. You can create more modules from several services.

import asab

from .service import BlankService

class BlankModule(asab.Module):
def __init__(self, app):

super().__init__(app)

self.BlankService = BlankService(app)

56 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

app

In app you create the whole application. You have to only include the module you have created. You can include more
modules here.

import bspump

class BlankAppApplication(bspump.BSPumpApplication):

def __init__(self):
super().__init__()

from .module import BlankModule
self.add_module(BlankModule)

init

create this file for initialization of your pipeline.

from .app import BlankAppApplication

how to start the pipeline

to start your pipeline create another file. For example, bspump-blank-app.py and copy-paste this code

from mypipeline.app import BlankAppApplication

if __name__ == '__main__':
app = BlankAppApplication()
app.run()

mypipeline.app is the path to your app python file. and BlankAppApplication is the name of your pipeline class.

Then you create an object of your class and run it.

2.3 Reference Documentation

BSPump Reference Documentation describes the bspump Python library. Based on ASAB library. ASAB is a platform
that enables BSPump to be efficient and easy to configure.

2.3. Reference Documentation 57

https://asab.readthedocs.io/en/latest/

BSPump Reference Documentation Documentation, Release v1903

2.3.1 Basics

Basics covers the most fundamental components of a BSPump. We will start with the “backbone” of the BSPump,
which is called a “pipeline”.

Pipeline

The pipeline class is responsible for construction of the BSPump pipeline itself. Its methods enable us to maintain a
working lifecycle of the system.

Pipeline is responsible for data processing in BSPump. Individual Pipeline objects work asynchronously and
independently of one another (provided dependence is not defined explicitly – for instance on a message source from
some other pipeline) and can be triggered in unlimited numbers. Each Pipeline is usually in charge of one concrete
task.

Pipeline has three main components:

• Source

• Processor

• Sink

Source connects different data sources with the Pipeline to be processed

Multiple sources

A Pipeline can have multiple sources. They are simply passed as a list of sources to a Pipeline build() method.

class MyPipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

[
MySource1(app, self),
MySource2(app, self),
MySource3(app, self),

]
bspump.common.NullSink(app, self),

)
:meta private:

58 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

The main component of the BSPump architecture is a so-called Processor. This object modifies, transforms and
enriches events. Moreover, it is capable of calculating metrics and creating aggregations, detecting anomalies or
react to known as well as unknown system behaviour patterns.
Processors differ as to their functions and all of them are aligned according to a predefined sequence in pipeline
objects. As regards working with data events, each Pipeline has its unique task.

Processors are passed as a list of Processors to a Pipeline build() method

class MyPipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

[
MyProcessor1(app, self),
MyProcessor2(app, self),
MyProcessor3(app, self),

]
bspump.common.NullSink(app, self),

)
:meta private:

Sink object serves as a final event destination within the pipeline given. Subsequently, the event is dispatched/written
into the system by the BSPump.

class Pipeline(app, id=None, config=None)
Bases: ABC, Configurable

Description: Pipeline is . . .

An example of The Pipeline construction:

class MyPipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

[
MySource(app, self),
MyProcessor(app, self),
MyProcessor2(app, self),

]
bspump.common.NullSink(app, self),

)

2.3. Reference Documentation 59

BSPump Reference Documentation Documentation, Release v1903

Pipeline construction

The following are the core methods of the pipeline.

Pipeline.build(source, *processors)
This method enables to add sources, Processors, and sink to create the structure of the Pipeline.

Parameters
source

[str] ID of a source.

*processors
[str, list optional] ID of Processor or list of IDs.

Pipeline.set_source(source)
Sets a specific source or list of sources to the Pipeline.

Parameters
source

[str, list optional] ID of a source.

If a list of sources is passed to the method, it adds the entire list of sources to the Pipeline.

Pipeline.append_processor(processor)
Adds a Processors to the current Pipeline.

Parameters
processor

[str] ID of a processor.

Hint
The Generator can be added by using this method. It requires a depth parameter.

Pipeline.remove_processor(processor_id)
Removes a specific processor from the Pipeline.

Parameters
processor_id

[str] ID of a processor.

Returns
Error when processor is not found.

Pipeline.insert_before(id, processor)
Inserts the Processor into the Pipeline in front of another processor specified by ID.

Parameters
id

[str] ID of a processor that we want to insert.

processor
[str] Name of the processor in front of which will be inserted the new processor.

Returns
True on success. False if ID was not found.

60 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Pipeline.insert_after(id, processor)
Inserts the Processor into the Pipeline behind another Processors specified by ID.

Parameters
id

[str] ID of a processor that we want to insert.

processor
[str] Name of a processor after which we insert our processor.

Returns
True if successful. False if ID was not found.

Pipeline.iter_processors()

Uses python generator routine that iterates through all Processors in the Pipeline.

Yields
A Processor from a list in the Pipeline.

Other Pipeline Methods

The additional methods below bring more features to the pipeline. However, many of them are very important and
almost necessary.

Pipeline.build(source, *processors)
This method enables to add sources, Processors, and sink to create the structure of the Pipeline.

Parameters
source

[str] ID of a source.

*processors
[str, list optional] ID of Processor or list of IDs.

Pipeline.iter_processors()

Uses python generator routine that iterates through all Processors in the Pipeline.

Yields
A Processor from a list in the Pipeline.

Other pipeline methods

Pipeline.time()

Returns correct time.

Returns
App.time()

Hint
More information in the ASAB documentation in UTC Time.

Pipeline.get_throttles()

Returns components from Pipeline that are throttled.

Returns
self._throttles Return list of throttles.

2.3. Reference Documentation 61

https://asab.readthedocs.io/en/latest/asab/application.html#utc-time

BSPump Reference Documentation Documentation, Release v1903

Pipeline.is_error()

Returns False when there is no error, otherwise it returns True.

Returns
self._error is not None.

Pipeline.set_error(context, event, exc)
When called with exc is None, it resets error (aka recovery).

When called with exc, it sets exceptions for soft errors.

Parameters
context

[type?] Context of an error.

event
[Data with time stamp stored in any data type usually is in JSON.] You can specify an event that is passed
to the method.

exc
[Exception.] Python default exceptions.

Pipeline.handle_error(exception, context, event)
Used for setting up exceptions and conditions for errors. You can implement it to evaluate processing errors.

Parameters
exception

[Exception] Used for setting up a custom Exception.

context
[information] Additional information can be passed.

event
[Data with time stamp stored in any data type, usually it is in JSON.] You can specify an event that is passed
to the method.

Returns
False for hard errors (stop the Pipeline processing). True for soft errors that will be ignored.

Example:

class SampleInternalPipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.common.InternalSource(app, self),
bspump.common.JSONParserProcessor(app, self),
bspump.common.PPrintSink(app, self)

)

def handle_error(self, exception, context, event):
if isinstance(exception, json.decoder.JSONDecodeError):

return True
return False

62 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Pipeline.link(ancestral_pipeline)
Links this Pipeline with an ancestral Pipeline. This is needed e. g. for a propagation of the throttling from
child Pipelines back to their ancestors. If the child Pipeline uses InternalSource, it may become throttled
because the internal queue is full. If so, the throttling is propagated to the ancestral Pipeline, so that its source
may block incoming events until the internal queue is empty again.

Parameters
ancestral_pipeline

[str] ID of a Pipeline that will be linked.

Pipeline.unlink(ancestral_pipeline)
Unlinks an ancestral Pipeline from this Pipeline.

Parameters
ancestral_pipeline

[str] ID of a ancestral Pipeline that will be unlinked.

Pipeline.throttle(who, enable=True)
Enables throttling method for a chosen pipeline and its ancestral pipelines,x if needed.

Parameters
who

[ID of a processor.] Name of a processor that we want to throttle.

enable
[bool, defualt True] When True, content of argument ‘who’ is added to _throttles list.

async Pipeline.ready()

Checks if the Pipeline is ready. The method can be used in source: await self.Pipeline.ready().

Pipeline.is_ready()

This method is a check up of the event in the Event class.

Returns
_ready.is_set().

Pipeline.inject(context, event, depth)
Injects method serves to inject events into the Pipeline’s depth defined by the depth attribute. Every depth is
interconnected with a generator object.

Parameters
context

[string] Information propagated through the Pipeline.

event
[Data with time stamp stored in any data type, usually it is in JSON.] You can specify an event that is passed
to the method.

depth
[int] Level of depth.

Note
For normal operations, it is highly recommended to use process method instead.

2.3. Reference Documentation 63

BSPump Reference Documentation Documentation, Release v1903

async Pipeline.process(event, context=None)
Process method serves to inject events into the Pipeline’s depth 0, while incrementing the event in metric.

Parameters
event

[Data with time stamp stored in any data type, usually it is in JSON.] You can specify an event that is passed
to the method.

context
[str, default None] You can add additional information needed for work with event streaming.

Hint
This is recommended way of inserting events into a Pipeline.

Pipeline.create_eps_counter()

Creates a dictionary with information about the Pipeline. It contains eps (events per second), warnings and
errors.

Returns
self.MetricsService Creates eps counter using MetricsService.

Note
EPS counter can be created using this method or dicertly by using MatricsService method.

Pipeline.ensure_future(coro)
You can use this method to schedule a future task that will be executed in a context of the Pipeline. The
Pipeline also manages a whole lifecycle of the future/task, which means, it will collect the future result, trash
it, and mainly it will capture any possible exception, which will then block the Pipeline via set_error().

Parameters
coro

[??] ??

Hint
If the number of futures exceeds the configured limit, the Pipeline is throttled.

Pipeline.locate_source(address)
Locates a sources based on its ID.

Parameters
address

[str] ID of the source.

Pipeline.locate_connection(app, connection_id)
Finds a connection by ID.

Parameters
app

[Application] Name of the Application.

connection_id
[str] ID of connection we want to locate.

64 Chapter 2. How to install BitSwan

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

Returns
connection

Pipeline.locate_processor(processor_id)
Finds a Processor by ID.

Parameters
processor_id

[str] ID of a Processor.

Returns
processor

Pipeline.start()

Starts the lifecycle of the Pipeline.

async Pipeline.stop()

Gracefully stops the lifecycle of the Pipeline.

Source

class Source(app, pipeline, id=None, config=None)
Bases: Configurable

Source class is responsible for connecting to a source, and propagating events or other data from the source to
the processors.

Source.__init__()

Set the initial ID, Pipeline and Task.

Parameters
app

[Application] Name of an Application <https://asab.readthedocs.io/en/latest/asab/application.html#>`_ .

pipeline
[address of a pipeline] Name of a Pipeline.

id
[str, default None] Name of a the Pipeline.

config
[compatible config type , default None] Option for adding a configuration file.

2.3. Reference Documentation 65

https://asab.readthedocs.io/en/latest/asab/application

BSPump Reference Documentation Documentation, Release v1903

2.3.2 Source Construction

Source is an object designed to obtain data from a predefined input. The BSPump contains a lot of universally usable,
specific source objects, which are capable of loading data from known data interfaces. The BitSwan product further
expands these objects by adding source objects directly usable for specific cases of use in industry field given.

Each source represent a coroutine/Future/Task that is running in the context of the main loop. The coroutine method
main() contains an implementation of each particular source.

Source MUST await a Pipeline ready state prior producing the event. It is acomplished by await self.Pipeline.ready()
call.

class Source(app, pipeline, id=None, config=None)
Bases: Configurable

Source class is responsible for connecting to a source, and propagating events or other data from the source to
the processors.

__init__(app, pipeline, id=None, config=None)
Set the initial ID, Pipeline and Task.

Parameters
app

[Application] Name of an Application <https://asab.readthedocs.io/en/latest/asab/
application.html#>`_ .

pipeline
[address of a pipeline] Name of a Pipeline.

id
[str, default None] Name of a the Pipeline.

config
[compatible config type , default None] Option for adding a configuration file.

async Source.process(event, context=None)
This method is used to emit event into a Pipeline.

Parameters
event: Data with time stamp stored in any data type, usually JSON.

Message or information that is passed to the method and emitted into a Pipeline.

context
[default None] Additional information.

If there is an error in the processing of the event, the Pipeline is throttled by setting the error and the exception
raised.

:hint The source should catch this exception and fail gracefully.

Source.start(loop)
Starts the Pipeline through the _main method, but if main method is implemented it starts the coroutine using
main method instead.

Parameters
loop

[?] Contains the coroutines.

66 Chapter 2. How to install BitSwan

https://asab.readthedocs.io/en/latest/asab/application
https://asab.readthedocs.io/en/latest/asab/application

BSPump Reference Documentation Documentation, Release v1903

async Source.stop()

Stops the Source using self.Task. If the processes are not done it cancels them or raises an error.

Source.restart(loop)
Restarts the loop of coroutines and returns result() method.

Parameters
loop

[??] Contains the coroutines.

async Source.main()

Can be implemented for additional features, else will raise NotImplementedError and _main is called instead.

async Source.stopped()

Waits for all asynchronous tasks to be completed. It is helper that simplifies the implementation of sources.

Example:

..code:: python

async def main(self):

#. . . initialize resources here

await self.stopped()

#. . . finalize resources here

Source.locate_address()

Locates address of a Pipeline.

Returns
ID and ID of a Pipeline as a string.

classmethod Source.construct(app, pipeline, definition: dict)
Can create a source based on a specific definition. For example, a JSON file.

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Specification of a Pipeline.

definition
[dict] Definition that is used to create a source.

Returns
cls(app, newid, config)

This is an abstract source class intended as a base for implementation of ‘cyclic’ sources such as file readers, SQL
extractors etc. You need to provide a trigger class and implement cycle() method.

Trigger source will stop execution, when a Pipeline is cancelled (raises concurrent.futures.CancelledError). This
typically happens when a program wants to quit in reaction to a on the signal.

You also may overload the main() method to provide additional parameters for a cycle() method.

2.3. Reference Documentation 67

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

async def main(self):
async with aiohttp.ClientSession(loop=self.Loop) as session:

await super().main(session)

async def cycle(self, session):
session.get(...)

class TriggerSource(app, pipeline, id=None, config=None)
Bases: Source

Description:

Returns

__init__(app, pipeline, id=None, config=None)
Set the initial ID, Pipeline and Task.

Parameters
app

[Application] Name of an Application <https://asab.readthedocs.io/en/latest/asab/
application.html#>`_ .

pipeline
[address of a pipeline] Name of a Pipeline.

id
[str, default None] Name of a the Pipeline.

config
[compatible config type , default None] Option for adding a configuration file.

TriggerSource.time()

Method used for measuring an accurate time.

Returns
App.time()

Hint
You can find more information about UTC Time in the ASAB documentation

TriggerSource.on()

Sets a Trigger which is a method that waits for a given condition.

Parameters
trigger

[keyword of a trigger] Given condition that.

Returns
Trigger.add(trigger)

68 Chapter 2. How to install BitSwan

https://asab.readthedocs.io/en/latest/asab/application
https://asab.readthedocs.io/en/latest/asab/application
https://asab.readthedocs.io/en/latest/asab/application.html#utc-time

BSPump Reference Documentation Documentation, Release v1903

async TriggerSource.main()

Waits for Pipeline, triggers, and calls exceptions when the source is initiated.

Parameters
*args : ?

**kwags : ?

async TriggerSource.cycle()

Not implemented.

Parameters
*args : ?

**kwags : ?

TriggerSource.rest_get()

Description:

Returns

2.3.3 Processor

The main component of the BSPump architecture is a so called processor. This object modifies, transforms and enriches
events. Moreover, it is capable of calculating metrics and creating aggregations, detecting anomalies or react to known
as well as unknown system behavior patterns.

Processors differ as to their functions and all of them are aligned according to a predefined sequence in pipeline objects.
As regards working with data events, each pipeline has its own unique task.

class Processor(app, pipeline, id=None, config=None)
Bases: ProcessorBase

Inherits from ProcessorBase.

__init__(app, pipeline, id=None, config=None)
Initializes the Parameters

Parameters
app

[object] Application object.

pipeline
[Pipeline] Name of the Pipeline.

id
[str, default=None,] ID of the class of config.

2.3. Reference Documentation 69

BSPump Reference Documentation Documentation, Release v1903

config
[JSON, or other compatible formats, default=None] Configuration file.

Processor.time()

Accurate representation of a time in the Pipeline.

Returns
App.time()

classmethod Processor.construct()

Can construct a processor based on a specific definition. For example, a JSON file.

Parameters
app

[Application] Name of the Application <https://asab.readthedocs.io/en/latest/asab/application.html#>_.

pipeline
[str] Name of the Pipeline.

definition
[dict] Set of instructions based on which processor can be constructed.

Returns
cls(app, pipeline, id=newid, config=config)

Processor.process()

Can be implemented to return event based on a given logic.

Parameters
context :

Additional information passed to the method.

event
[Data with time stamp stored in any data type, usually it is in JSON.] You can specify an event that is passed
to the method.

Processor.locate_address()

Returns an ID of a processor and a Pipeline.

Returns
ID of the Pipeline and self.Id.

Processor.rest_get()

Description:

Returns
Processor.__repr__()

Return repr(self).

70 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Sink

Sink object serves as a final event destination within the pipeline given. Subsequently, the event is dispatched/written
into the system by the BSPump.

class Sink(app, pipeline, id=None, config=None)
Bases: ProcessorBase

Sink is basically a processor. It takes an event sends it to a database where it is stored.

__init__(app, pipeline, id=None, config=None)
Initializes the Parameters

Parameters
app

[object] Application object.

pipeline
[Pipeline] Name of the Pipeline.

id
[str, default=None,] ID of the class of config.

config
[JSON, or other compatible formats, default=None] Configuration file.

Connection

class Connection(app, id=None, config=None)
Bases: ABC, Configurable

Connection class is responsible for creating a connection between items or services within the infrastructure of
BSPump. Their main use is to create connection with the main components of BSPump: source, processor
and sink.

__init__(app, id=None, config=None)
Description:

Parameters
app

[Application] Specification of an Application.

id : default None

config
[JSON or other compatible format, default None] It contains important information and data respon-
sible for creating a connection.

2.3. Reference Documentation 71

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

Connection construction

Connection.time()

Returns accurate time of the asynchronous process.

Hint
More information in the ASAB documentation in UTC Time.

2.3.4 Top Level Objects

BSPumpApplication

class BSPumpApplication(*args, **kwargs)
Bases: Application

BSPumpApplication is responsible for the main life cycle of the Application. It is based on ASAB Application
class

BSPumpApplication.__init__()

Initiates the Application and looks for config with additional arguments.

Parameters
args : default= None

web_listen : default= None

BSPumpApplication Construction

BSPumpApplication.create_argument_parser()

Enables to create arguments that can be called within the command prompt when starting the application

Returns
parser

BSPumpApplication.parse_arguments(args=None)
Parses argument in the ASAB Application using super() method.

Parameters
args : default= None

Returns
args

72 Chapter 2. How to install BitSwan

https://asab.readthedocs.io/en/latest/asab/application.html#utc-time
https://asab.readthedocs.io/en/latest/asab/application.html
https://asab.readthedocs.io/en/latest/asab/application.html
https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

async BSPumpApplication.main()

Prints a message about how many pipelines are ready.

BSPumpService

class BSPumpService(app, service_name='bspump.PumpService')
Bases: Service

Service registry based on Service object. Read more in ASAB documentation `Service
<https://asab.readthedocs.io/en/latest/asab/service.html`_.

BSPumpService.__init__()

Initializes parameters passed to the Service class.

Parameters
app

[Application] Name of the Application.

service_name
[str, Service name] string variable containing “”bspump.PumpService

BSPumpService Methods

BSPumpService.locate(address)
locates pipeline, source or processor based on the adressed parameter

Parameters
address

[str, ID] Address of an pipeline component.

BSPumpService.add_pipeline(pipeline)
Adds a pipeline to the BSPump.

Parameters
pipeline

[Pipeline] Name of the Pipeline.

BSPumpService.add_pipelines(*pipelines)
Adds a pipelines the BSPump.

Parameters

2.3. Reference Documentation 73

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

*pipelines
[list] List of pipelines that are add to the BSPump.

BSPumpService.del_pipeline(pipeline)
Deletes a pipeline from a list of Pipelines.

**Parameters*

pipeline
[str, ID] ID of a pipeline.

BSPumpService.add_connection(connection)
Adds a connection to the Connection dictionary.

Parameters
connection

[str, ID] ID of a connection.

Returns
connection

BSPumpService.add_connections(*connections)
Adds a connections to the Connection dictionary.

Parameters
*connection

[str, ID] list of IDs of a connections.

BSPumpService.locate_connection(connection_id)
Locates connection based on connection ID.

Parameters
connection_id

[ID] Connection ID.

BSPumpService.add_lookup(lookup)
Sets a lookup based on Lookup.

Parameters
lookup

[Lookup] Name of the Lookup.

Returns
lookup

BSPumpService.add_lookups(*lookups)
Adds a list of lookups to the Pipeline.

Parameters
lookup

[Lookup] List of Lookups.

BSPumpService.locate_lookup(lookup_id, context=None)
Locates lookup based on ID.

Parameters

74 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

lookup_id
[ID] ID of a Lookup.

context
[,default = None] Additional information.

Returns
lookup from the lookup service or form the internal dictionary.

BSPumpService.add_lookup_factory(lookup_factory)
Adds a lookup factory

Parameters
lookup_factory :

Name of lookup factory.

BSPumpService.add_matrix(matrix)
Adds a matrix to the Pipeline.

Parameters
matrix

[Matrix] Name of Matrix.

Returns
matrix

BSPumpService.add_matrixes(*matrixes)
Adds a list of Matrices to the Pipeline.

Parameters
*matrixes

[list] List of matrices.

BSPumpService.locate_matrix(matrix_id)
Locates a matrix based on matrix ID

Parameters
matrix_id

[str, ID] ID of a matrix.

async BSPumpService.initialize(app)
Initializes an Application based on ASAB Application

Parameters
app

[Application] Name of the Application

async BSPumpService.finalize(app)
Stops all the pipelines

Parameters
app

[Application] Name of the Application

2.3. Reference Documentation 75

https://asab.readthedocs.io/en/latest/asab/application.html
https://asab.readthedocs.io/en/latest/asab/application.html
https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

2.3.5 Common

Aggregator

Aggregation Strategy

class AggregationStrategy

Bases: ABC

Aggregation Strategy

AggregationStrategy.__init__()

Aggregation Strategy Methods

abstract AggregationStrategy.append(context, event)
Appends

Parameters
context :

event :

abstract AggregationStrategy.flush()

Flushes

abstract AggregationStrategy.is_empty()→ bool
Description:

List Aggregation Strategy

class ListAggregationStrategy

Bases: AggregationStrategy

Description: . . . test

76 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

ListAggregationStrategy.__init__()

Description:

List Aggregation Strategy Methods

ListAggregationStrategy.append(context, event)
Description:

Parameters
context :

event :

ListAggregationStrategy.flush()

Description:

Returns
result

ListAggregationStrategy.is_empty()→ bool
Description:

Returns
Aggregated Event

String Aggregation Strategy

class StringAggregationStrategy(delimiter='\n')
Bases: AggregationStrategy

Description:

StringAggregationStrategy.__init__()

Description:

2.3. Reference Documentation 77

BSPump Reference Documentation Documentation, Release v1903

String Aggregation Strategy Methods

StringAggregationStrategy.append(context, event)
Description:

Parameters
context :

event
[Data with time stamp stored in any data type usually is in JSON.] You can specify an event that is passed
to the method.

StringAggregationStrategy.flush()

Description:

Returns
result

StringAggregationStrategy.is_empty()→ bool
Description:

Returns
Aggregated event

Aggregator

class Aggregator(app, pipeline, aggregation_strategy: ~bspump.common.aggregator.AggregationStrategy =
<bspump.common.aggregator.ListAggregationStrategy object>, id=None, config=None)

Bases: Generator

Description:

Aggregator.__init__()

Description:

78 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Aggregator

Aggregator.flush()

Description:

Returns
??

Aggregator.process(context, event)
Description:

Parameters
context :

event :

async Aggregator.generate(context, aggregated_event, depth)
Description:

Parameters
context :

aggregated_event :

depth :

Bytes

String to Bytes Parser

class StringToBytesParser(app, pipeline, id=None, config=None)
Bases: Processor

Description:

** Default Config **

encoding : utf-8

StringToBytesParser.__init__()

Description:

2.3. Reference Documentation 79

BSPump Reference Documentation Documentation, Release v1903

String To Bytes Parser Method

StringToBytesParser.process(context, event)
Description:

Returns
event.decode(self.Encoding)

Bytes To String Parser

class BytesToStringParser(app, pipeline, id=None, config=None)
Bases: Processor

Description:

BytesToStringParser.__init__()

Description:

Bytes To String Parser Method

BytesToStringParser.process(context, event)
Description:

Returns
event.decode(self.Encoding)

Flatten

Flatten Dict Processor

class FlattenDictProcessor(app, pipeline, id=None, config=None)
Bases: Processor

Description:

Inspired by https://github.com/amirziai/flatten

Example:

80 Chapter 2. How to install BitSwan

https://github.com/amirziai/flatten

BSPump Reference Documentation Documentation, Release v1903

“person”: {
“details”: {

“first_name”: “John”, “last_name”: “Doe”

}, “address”: {

“country”: “GB”, “city”: “London”, “postal_code”: “WC2N 5DU”

}

}

Gets converted to:

{
“person.details.first_name”: “John”, “person.details.last_name”: “Doe”, “per-
son.address.country”: “GB”, “person.address.city”: “London”, “person.address.postal_code”:
“WC2N 5DU”

}

..automethod:: bspump.common.FlattenDictProcessor.__init__()

Flatten Dict Processor

FlattenDictProcessor.flatten(nested_dict)
Description:

Returns
flattened_dict

FlattenDictProcessor.process(context, event)
Description:

Returns
event

Hexlify

Hexlify Processor

class HexlifyProcessor(app, pipeline, id=None, config=None)
Bases: Processor

Description:

2.3. Reference Documentation 81

BSPump Reference Documentation Documentation, Release v1903

Hexlify Processor Method

HexlifyProcessor.process(context, event)
Description:

Returns
binascii.hexlify(event)

Iterator

Hexlify Processor

class IteratorSource(app, pipeline, iterator: Iterator, id=None, config=None)
Bases: TriggerSource

Description:

IteratorSource.__init__()

Description:

Hexlify Processor Method

async IteratorSource.cycle(*args, **kwags)
Description:

Hexlify Processor

class IteratorGenerator(app, pipeline, id=None, config=None)
Bases: Generator

Description:

82 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

IteratorGenerator.__init__()

Description:

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

id
[str, default = None] ID

config
[JSON, defualt = None] configuration file containing additional information.

Iterator Generator Method

async IteratorGenerator.generate(context, event, depth)
Description:

Json

CySimd Json Parser

class CySimdJsonParser(app, pipeline, id=None, config=None)
Bases: Processor

Fast JSON parser. Expects json bytes represented as bytes as input Based on https://github.com/TeskaLabs/
cysimdjson

CySimdJsonParser.__init__()

Description: .

2.3. Reference Documentation 83

https://github.com/TeskaLabs/cysimdjson
https://github.com/TeskaLabs/cysimdjson

BSPump Reference Documentation Documentation, Release v1903

CySimd Json Parser Method

CySimdJsonParser.process(context, event: bytes)
Description:

Returns
self._parser.parse(event)

Std Dict To Json Parser

class StdDictToJsonParser(app, pipeline, id=None, config=None)
Bases: Processor

Description:

Std Dict To Json Parser Method

StdDictToJsonParser.process(context, event)
Description:

Returns
?

Std Json To Dict Parser

class StdJsonToDictParser(app, pipeline, id=None, config=None)
Bases: Processor

Description:

84 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Std Json To Dict Parser Method

StdJsonToDictParser.process(context, event)
Description:

Returns
???

Dict To JsonBytes Parser

class DictToJsonBytesParser(app, pipeline, id=None, config=None)
Bases: Processor

DictToJsonBytesParser transforms a dictionary to JSON-string encoded in bytes. The encoding charset can be
specified in the configuration in encoding field.

DictToJsonBytesParser.__init__()

Initializes the Parameters

Parameters
app

[object] Application object.

pipeline
[Pipeline] Name of the Pipeline.

id
[str, default=None,] ID of the class of config.

config
[JSON, or other compatible formats, default=None] Configuration file.

Dict To Json Bytes Parser Method

DictToJsonBytesParser.process(context, event)
Can be implemented to return event based on a given logic.

Parameters
context :

Additional information passed to the method.

event
[Data with time stamp stored in any data type, usually it is in JSON.] You can specify an event that is passed
to the method.

2.3. Reference Documentation 85

BSPump Reference Documentation Documentation, Release v1903

Mapping

Mapping Keys Processor

class MappingKeysProcessor(app, pipeline, id=None, config=None)
Bases: Processor

Description: Mapping Keys Processor

Mapping Keys Processor Method

MappingKeysProcessor.process(context, event: Mapping)→ list
Description: process is a method of a Mapping Keys Processor

Returns
event.keys()

Mapping Values Processor

class MappingValuesProcessor(app, pipeline, id=None, config=None)
Bases: Processor

Description:

Mapping Values Processor Method

MappingValuesProcessor.process(context, event: Mapping)→ list
Description:

Returns
event.values()

86 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Mapping Items Processor

class MappingItemsProcessor(app, pipeline, id=None, config=None)
Bases: Processor

Description:

Mapping Items Processor Method

MappingItemsProcessor.process(context, event: Mapping)→ list
Description:

Returns
event.items()

Mapping Keys Generator

class MappingKeysGenerator(app, pipeline, id=None, config=None)
Bases: Generator

Description:

Mapping Keys Generator Method

async MappingKeysGenerator.generate(context, event, depth)
Description:

Null

Null Sink

class NullSink(app, pipeline, id=None, config=None)
Bases: Sink

Description:

2.3. Reference Documentation 87

BSPump Reference Documentation Documentation, Release v1903

Null Sink Method

NullSink.process(context, event)
Description:

Print

Print Sink

class PrintSink(app, pipeline, id=None, config=None, stream=None)
Bases: Sink

Description:

__init__(app, pipeline, id=None, config=None, stream=None)
Description:

Print Sink Method

PrintSink.process(context, event)
Description:

PPrint Sink

class PPrintSink(app, pipeline, id=None, config=None, stream=None)
Bases: Sink

Description:

88 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

__init__(app, pipeline, id=None, config=None, stream=None)
Description:

PPrint Sink Method

PPrintSink.process(context, event)
Description:

Print Processor

class PrintProcessor(app, pipeline, id=None, config=None, stream=None)
Bases: Processor

Description:

__init__(app, pipeline, id=None, config=None, stream=None)
Description:

Print Processor Method

PrintProcessor.process(context, event)
Description:

Returns
event

2.3. Reference Documentation 89

BSPump Reference Documentation Documentation, Release v1903

PPrint Processor

class PPrintProcessor(app, pipeline, id=None, config=None, stream=None)
Bases: Processor

Description:

__init__(app, pipeline, id=None, config=None, stream=None)
Description:

PPrint Processor Method

PPrintProcessor.process(context, event)
Description:

Returns
event

Print Context Processor

class PrintContextProcessor(app, pipeline, id=None, config=None, stream=None)
Bases: Processor

Description:

__init__(app, pipeline, id=None, config=None, stream=None)
Description:

90 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Print Context Processor Method

PrintContextProcessor.process(context, event)
Description:

Returns
event

PPrint Context Processor

class PPrintContextProcessor(app, pipeline, id=None, config=None, stream=None)
Bases: Processor

Description:

__init__(app, pipeline, id=None, config=None, stream=None)
Description:

PPrint Context Processor Method

PPrintContextProcessor.process(context, event)
Description:

Returns
event

Routing

Direct Source

class DirectSource(app, pipeline, id=None, config=None)
Bases: Source

Description: This source processes inserted event synchronously.

2.3. Reference Documentation 91

BSPump Reference Documentation Documentation, Release v1903

DirectSource.__init__()

Description:

Direct Source

DirectSource.put(context, event, copy_context=False, copy_event=False)
This method serves to put events into the pipeline and process them right away.

Context can be an empty dictionary if is not provided.

async DirectSource.main()

Description:

Internal Source

class InternalSource(app, pipeline, id=None, config=None)
Bases: Source

Description:

InternalSource.__init__()

Description:

92 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Internal Source methods

InternalSource.put(context, event, copy_context=False, copy_event=False)
Description: Context can be an empty dictionary if is not provided.

If you are getting a asyncio.queues.QueueFull exception, you likely did not implemented backpressure handling.
The simpliest approach is to use RouterSink / RouterProcessor.

async InternalSource.put_async(context, event, copy_context=False, copy_event=False)
Description: This method allows to put an event into InternalSource asynchronously. Since a processing in
the pipeline is synchronous, this method is useful mainly for situation, when an event is created outside of the
pipeline processing. It is designed to handle situation when the queue is becoming full.

Context can be an empty dictionary if is not provided.

async InternalSource.main()

Description:

InternalSource.rest_get()

Description:

Returns
rest

Router Mix In

class RouterMixIn

Bases: object

Description: Router Mix in a class

RouterMixIn.__init__()

2.3. Reference Documentation 93

BSPump Reference Documentation Documentation, Release v1903

Router Mix In methods

RouterMixIn.locate(source_id)
Description:

Returns
source

RouterMixIn.unlocate(source_id)
Description: Undo locate() call, it means that it removes the source from a cache + remove throttling binds

Returns
??

RouterMixIn.dispatch(context, event, source_id, copy_event=True)
Description:

Returns
self.route(context, event, source_id, copy_event=True)

RouterMixIn.route(context, event, source_id, copy_event=True)
Description: This method routes an event to a InternalSource source_id.

It can be called multiple times from a process() method, which results in a cloning of the event.

Router Sink

class RouterSink(app, pipeline, id=None, config=None)
Bases: Sink , RouterMixIn

Description: Abstract Sink that dispatches events to other internal sources. One should override the process()
method and call route() with target source id.

94 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

RouterSink.__init__()

Initializes the Parameters

Parameters
app

[object] Application object.

pipeline
[Pipeline] Name of the Pipeline.

id
[str, default=None,] ID of the class of config.

config
[JSON, or other compatible formats, default=None] Configuration file.

Router Processor

class RouterProcessor(app, pipeline, id=None, config=None)
Bases: Processor, RouterMixIn

Description: Abstract Processor that dispatches events to other internal sources. One should override the pro-
cess() method and call route() with target source id.

RouterProcessor.__init__()

Description:

Tee

Tee Source Processor

class TeeSource(app, pipeline, id=None, config=None)
Bases: InternalSource

Description:

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.socket.TCPStreamSource(app, self, config={‘port’: 7000}),
bspump.common.TeeProcessor(app, self).bind(“SampleTeePipeline.*TeeSource”),
bspump.common.PPrintSink(app, self)

)

class SampleTeePipeline(bspump.Pipeline):

2.3. Reference Documentation 95

BSPump Reference Documentation Documentation, Release v1903

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)

self.build(
bspump.common.TeeSource(app, self), bspump.common.PPrintSink(app, self)

)

TeeSource.__init__()

Description:

Tee Source Method

TeeSource.bind(target)
Description:

Returns

async TeeSource.main()

Description:

Returns

Tee Processor

class TeeProcessor(app, pipeline, id=None, config=None)
Bases: RouterProcessor

Description: See TeeSource for details.

TeeProcessor.__init__()

Description:

96 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Tee Processor Method

TeeProcessor.bind(target: str)
Description: Target is a bspump.PumpService.locate() string

Returns
?

TeeProcessor.unbind(target: str)
Description:

Returns
?

TeeProcessor.process(context, event)
Description:

Returns
event

Time

Time Zone Normalizer

class TimeZoneNormalizer(app, pipeline, id=None, config=None)
Bases: Processor

Description: Normalizes datetime from local timezone (e.g. in config) to UTC, which is preferred internal
datetime form

TimeZoneNormalizer.__init__()

Description:

2.3. Reference Documentation 97

BSPump Reference Documentation Documentation, Release v1903

Time Zone Normalizer Method

TimeZoneNormalizer.normalize(local_time: datetime)→ datetime
Description: If local_time doesn’t contain a time zone (e.g. it is naive), the timezone will be added from config

Returns
Normalized local_time in UTC

TimeZoneNormalizer.process(context, event)
Description: Abstract method to process the event. Must be customized.

Example:

>>> native_time = event["@timestamp"]
>>> local_time = self.normalize(native_time)
>>> event["@timestamp"] = local_time

Transfr

Mapping Transformator

class MappingTransformator(app, pipeline, id=None, config=None)
Bases: Processor

Description:

MappingTransformator.__init__()

Description:

98 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Mapping Transformator Methods

MappingTransformator.build(app)
Description:

MappingTransformator.process(context, event: Mapping)→ dict
Description:

Returns
dict(map(self._map, event.items()))

2.3.6 Advanced

BitSwan Pump provides more advanced Processors that can be used in a pipeline

Generator

Generator object is used to generate one or multiple events in asynchronous way
and pass them to following processors in the pipeline. In the case of Generator, user overrides generate method,
not process.

1.) Generator can iterate through an event to create (generate) derived ones and pass them to following processors.

Example of a custom Generator class with generate method:

class MyGenerator(bspump.Generator):

async def generate(self, context, event, depth):
for item in event.items():

self.Pipeline.inject(context, item, depth)

2.) Generator can in the same way also generate completely independent events, if␣
→˓necessary.
In this way, the generator processes originally synchronous events "out-of-band" e.g.␣
→˓out of the synchronous processing within the pipeline.

Specific implementation of the generator should implement the generate method to process␣
→˓events while performing
long running (asynchronous) tasks such as HTTP requests or SQL select.
The long running tasks may enrich events with relevant information, such as output of␣
→˓external calculations.

Example of generate method:

2.3. Reference Documentation 99

BSPump Reference Documentation Documentation, Release v1903

async def generate(self, context, event, depth):

Perform possibly long-running asynchronous operation
async with aiohttp.ClientSession() as session:

async with session.get("https://example.com/resolve_color/{}".
→˓format(event.get("color_id", "unknown"))) as resp:

if resp.status != 200:
return

new_event = await resp.json()

Inject a new event into a next depth of the pipeline
self.Pipeline.inject(context, new_event, depth)

class Generator(app, pipeline, id=None, config=None)
Bases: ProcessorBase

Description:

Generator.__init__()

Description:

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

id
[str, default = None] ID

config
[JSON, defualt = None] configuration file containing additional information.

Generator Construction

Generator.set_depth(depth)
Description:

Parameters
depth : int

Generator.process(context, event)
Description:

Parameters
context :

event
[any data type] information of any data type with timestamp.

100 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

async Generator.generate(context, event, depth)
Description:

Parameters
context :

event
[any data type] information of any data type with timestamp.

depth : int

Analyzer

This is general analyzer interface, which can be the basement of different analyzers.
analyze_on_clock enables analyzis by timer, which period can be set by analyze_period or Con-
fig[“analyze_period”].

In general, the Analyzer contains some object, where it accumulates some information about events. Events go
through analyzer unchanged, the information is recorded by evaluate() function. The internal object sometimes
should be processed and sent somewhere (e.g. another pipeline), this process can be done by analyze() function,
which can be triggered by time, pubsub or externally

class Analyzer(app, pipeline, analyze_on_clock=False, id=None, config=None)
Bases: Processor

Description:

Analyzer.__init__()

Initializes the Parameters

Parameters
app

[object] Application object.

pipeline
[Pipeline] Name of the Pipeline.

id
[str, default=None,] ID of the class of config.

config
[JSON, or other compatible formats, default=None] Configuration file.

Analyzer Construction

Analyzer.start_timer(event_type)
Description:

Analyzer

The main function, which runs through the analyzed object. Specific for each analyzer. If the analyzed object is
Matrix, it is not recommended to iterate through the matrix row by row (or cell by cell). Instead use numpy fuctions.
Examples: 1. You have a vector with n rows. You need only those row indeces, where the cell content is more than
10. Use np.where(vector > 10). 2. You have a matrix with n rows and m columns. You need to find out which rows
fully consist of zeros. use np.where(np.all(matrix == 0, axis=1)) to get those row indexes. Instead np.all() you can use
np.any() to get all row indexes, where there is at least one zero. 3. Use np.mean(matrix, axis=1) to get means for all
rows. 4. Usefull numpy functions: np.unique(), np.sum(), np.argmin(), np.argmax().

2.3. Reference Documentation 101

BSPump Reference Documentation Documentation, Release v1903

Analyzer.analyze()

Description:

Analyzer.evaluate(context, event)

The function which records the information from the event into the analyzed object.
Specific for each analyzer.

Parameters
context :

event
[any data type] information with timestamp.

Analyzer.predicate(context, event)
This function is meant to check, if the event is worth to process. If it is, should return True. specific for each
analyzer, but default one always returns True.

Parameters
context :

event
[any data type] information with timestamp.

Returns
True

Analyzer.process(context, event)

The event passes through process(context, event) unchanged.
Meanwhile it is evaluated.

Parameters
context :

event
[any data type] information with timestamp.

Returns
event

async Analyzer.on_clock_tick()

Run analyzis every tick.

Analyzing Source

Lookup

Lookups serve for fast data searching in lists of key-value type. They can subsequently be localized and
used in pipeline objects (processors and the like). Each lookup requires a statically or dynamically created
value list.

If the “lazy” parameter in the constructor is set to True, no load method is called and the user is expected
to call it when necessary.

102 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

class Lookup(app, id=None, config=None, lazy=False)
Bases: Configurable

Description:

Returns

Lookup.__init__()

Description:

Lookup Construction

Lookup.time()

Description:

Returns
time

Lookup.ensure_future_update(loop)
Description:

Returns

async Lookup.load()→ bool
Description:

Lookup.serialize()

Description:

Lookup.deserialize(data)
Description:

Lookup.is_master()

Description:

Returns
??

2.3. Reference Documentation 103

BSPump Reference Documentation Documentation, Release v1903

MappingLookup

class MappingLookup(app, id=None, config=None, lazy=False)
Bases: Lookup, Mapping

Description:

MappingLookup.__init__()

Description:

Async Lookup Mixin

AsyncLookupMixin makes sure the value from the lookup is obtained asynchronously. AsyncLookupMixin is to be
used for every technology that is external to BSPump, respective that require a connection to resource server such as
SQL etc.

class AsyncLookupMixin(app, id=None, config=None, lazy=False)
Bases: Lookup

Description:

Dictionary Lookup

class DictionaryLookup(app, id=None, config=None, lazy=False)
Bases: MappingLookup

Description:

DictionaryLookup.__init__()

Description:

Dictionary Lookup Methods

DictionaryLookup.__getitem__(key)

DictionaryLookup.__len__()

DictionaryLookup.serialize()

Description:

Returns
json data

104 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

DictionaryLookup.deserialize(data)
Description:

DictionaryLookup.rest_get()

Description:

Returns
rest

DictionaryLookup.set(dictionary: dict)
Description:

Lookup Provider

class LookupProviderABC(lookup, url, id=None, config=None)
Bases: ABC, Configurable

Description:

LookupProviderABC.__init__()

Description:

Lookup Provider Methods

async LookupProviderABC.load()

Description:

2.3. Reference Documentation 105

BSPump Reference Documentation Documentation, Release v1903

Lookup BatchProvider ABC

class LookupBatchProviderABC(lookup, url, id=None, config=None)
Bases: LookupProviderABC, ABC

Description:

LookupBatchProviderABC.__init__()

Description:

Anomaly

class Anomaly

Bases: dict

Description: Anomaly is an abstract class to be overriden for a specific anomaly and its type.

Returns
Implement: TYPE, on_tick

Anomaly.__init__()

2.3.7 Technologies

Technologies Reference Documentation describes the Technologies section.

Apache Kafka

Connection

class KafkaConnection(app, id=None, config=None)
Bases: Connection

KafkaConnection serves to connect BSPump application with an instance of Apache Kafka messaging
system. It can later be used by processors to consume or provide user-defined messages.

config = {"compression_type": "gzip"}
app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")
svc.add_connection(

bspump.kafka.KafkaConnection(app, "KafkaConnection", config)
)

106 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

ConfigDefaults options:

compression_type (str): Kafka supports several compression types: gzip, snappy
and lz4.

This option needs to be specified in Kafka Producer only, Consumer will decompress
automatically.

security_protocol (str): Protocol used to communicate with brokers.
Valid values are: PLAINTEXT, SSL. Default: PLAINTEXT.

sasl_mechanism (str): Authentication mechanism when security_protocol
is configured for SASL_PLAINTEXT or SASL_SSL. Valid values are: PLAIN, GSS-
API, SCRAM-SHA-256, SCRAM-SHA-512. Default: PLAIN

sasl_plain_username (str): username for sasl PLAIN authentication.
Default: None

sasl_plain_password (str): password for sasl PLAIN authentication.
Default: None

KafkaConnection.__init__()

initializes variables

Parameters
app

[Application] Name of the Application.

id
[, default = None] ID information.

config
[JSON or txt, default= None] Configuration file of any supported type.

connection Methods

async KafkaConnection.create_producer(**kwargs)
Creates a Producer.

Parameters
**kwargs :

Additional information can be passed to this method.

Returns
producer

KafkaConnection.create_consumer(*topics, **kwargs)
Creates a consumer.

Parameters
*topics :

any number of topics can be passed to this method.

2.3. Reference Documentation 107

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

**kwargs :
additional information can be passed to this method.

Returns
consumer

KafkaConnection.get_bootstrap_servers()

Returns parsed bootstrap servers found in config.

Returns
list of url

KafkaConnection.get_compression()

Returns compression type to use in connection

Returns
compression_type

Source

class KafkaSource(app, pipeline, connection, id=None, config=None)
Bases: Source

KafkaSource object consumes messages from an Apache Kafka system, which is configured in the
KafkaConnection object. It then passes them to other processors in the pipeline.

class KafkaPipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

bspump.kafka.KafkaSource(app, self, "KafkaConnection",␣
→˓config={'topic': 'messages'}),

bspump.kafka.KafkaSink(app, self, "KafkaConnection", config=
→˓{'topic': 'messages2'}),

)

To ensure that after restart, pump will continue receiving messages where it left␣
→˓of, group_id has to
be provided in the configuration.

When the group_id is set, the consumer group is created and the Kafka server will␣
→˓then operate (continues on next page)

108 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

in the producer-consumer mode. It means that every consumer with the same group_id␣
→˓will be assigned
unique set of partitions, hence all messages will be divided among them and thus␣
→˓unique.

Long-running synchronous operations should be avoided or places inside the␣
→˓OOBGenerator in the asynchronous
way or on thread using ASAB Proactor service (see bspump-oob-proactor.py example in
→˓"examples" folder).
Otherwise, the session_timeout_ms should be raised to prevent Kafka from␣
→˓disconnecting the consumer
from the partition, thus causing rebalance.

KafkaSource.__init__()

Initializes parameters.

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

connection
[Connection] information needed to create a connection.

id : , default = None

config : , default = None

Source Methods

KafkaSource.create_consumer()

Creates a consumer.

async KafkaSource.initialize_consumer()

Creates a consumer after the loop is started.

async KafkaSource.main()

Method that starts the Source.

Sink

class KafkaSink(app, pipeline, connection, key_serializer=None, id=None, config=None)
Bases: Sink

Description: KafkaSink is a sink processor that forwards the event to a Apache Kafka specified by a
KafkaConnection object.

KafkaSink expects bytes as an input. If the input is string or dictionary, it is automatically transformed
to bytes using encoding charset specified in the configuration.

2.3. Reference Documentation 109

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

class KafkaPipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

bspump.kafka.KafkaSource(app, self, "KafkaConnection",␣
→˓config={'topic': 'messages'}),

bspump.kafka.KafkaSink(app, self, "KafkaConnection", config=
→˓{'topic': 'messages2'}),

)

There are two ways to use KafkaSink:
- Specify a single topic in KafkaSink config - topic, to be used for all the events␣
→˓in pipeline.
- Specify topic separetly for each event in event context - context['kafka_topic'].

Topic from configuration is than used as a default topic.
To provide business logic for event distribution, you can create topic␣

→˓selector processor.
Processor example:

class KafkaTopicSelector(bspump.Processor):

def process(self, context, event):
if event.get("weight") > 10:

context["kafka_topic"] = "heavy"
else:

context["kafka_topic"] = "light"

return event

Every kafka message can be a key:value pair. Key is read from event context -␣
→˓context['kafka_key'].
If kafka_key is not provided, key defaults to None.

KafkaSink.__init__()

Initilizes the parameters that are passed to the Sink class.

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

connection
[Connection] information needed to create a connection.

key_serializer : , default = None

id : , default = None

config : , default = None

110 Chapter 2. How to install BitSwan

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

Sink Methods

KafkaSink.process(context, event: Union[dict, str, bytes])
Outputs events to a chosen location.

Parameters
context

[type] Additional information.

event:typing.Union[dict, str, bytes] :

Key Filter Kafka

class KafkaKeyFilter(app, pipeline, keys, id=None, config=None)
Bases: Processor

KafkaKeyFilter reduces the incoming event stream from Kafka based on a key provided in each event.

Every Kafka message has a key, KafkaKeyFilter selects only those events where the event key matches one of
provided ‘keys’, other events will be discarded.

Set filtering keys as a parameter (in bytes) in the KafkaKeyFilter constructor.

KafkaKeyFilter is meant to be inserted after KafkaSource in a Pipeline.

KafkaKeyFilter.__init__()

Initializes variables

Parameters
app

[Application] Name of the `Application <https://asab.readthedocs.io/en/latest/asab/application.html`_.

pipeline
[Pipeline] Name of the Pipeline.

keys
[bytes] keys used to filter out events from the event stream.

id : , default = None

config
[JSON, default = None] configuration file in JSON

KafkaKeyFilter.process(context, event)
Does the filtering processed based on passed key variable.

Parameters
context

[Context] additional information passed to the method

event : any type,a single unit of information that flows through the Pipeline.

2.3. Reference Documentation 111

BSPump Reference Documentation Documentation, Release v1903

Batch Sink

class KafkaBatchSink(app, pipeline, connection, key_serializer=None, id=None, config=None)
Bases: KafkaSink

KafkaBatchSink is a sink processor that forwards the event to an Apache Kafka specified by a KafkaConnection
object in batches.

It is a proof of concept sink, that allows faster processing of events in the pipeline, but does not guarantee
processing of all events in situations when the pump is closed etc.

There is a work to be done with cooperation with aiokafka, so the send_and_wait method works properly and is
able to send events in batches.

KafkaBatchSink.__init__()

Initializing parameters passed to the BatchSink class.

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

connection
[Connection] Information needed to creates connection.

key_serializer : ,default None

id : , default = None

config
[JSON, default = None] Configuration file with additional information.

Batch Sink Methods

KafkaBatchSink.process(context, event: Union[dict, str, bytes])
Starts the sink process.

Parameters
context

[type?] Additional information.

event: typing.Union[dict, str, bytes] : type?

Topic Initializer

class KafkaTopicInitializer(app, connection, id: Optional[str] = None, config: Optional[dict] = None)
Bases: Configurable

KafkaTopicInitializer reads topic configs from file or from Kafka sink/source configs, checks if they exists and
creates them if they don’t.

KafkaAdminClient requires blocking connection, which is why this class doesn’t use the connection module
from BSPump.

112 Chapter 2. How to install BitSwan

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

Usage: topic_initializer = KafkaTopicInitializer(app, “KafkaConnection”)
topic_initializer.include_topics(MyPipeline) topic_initializer.initialize_topics()

KafkaTopicInitializer.__init__()

Initializes the parameters passed to the class.

Parameters
app

[Application] Name of the Application.

connection
[Connection] Information needed to create a connection.

id: typing.Optional[str] = None :

config: dict = None
[JSON] configuration file containing important information.

topic initializer methods

KafkaTopicInitializer.include_topics(*, topic_config=None, kafka_component=None, pipeline=None,
config_file=None)

Includes topic from config file or dict object. It can also scan Pipeline and get topics from Source or Sink.

Parameters
• :

topic_config
[, default= None] Topic config file.

kafka_component : , default= None

pipeline
[, default= None] Name of the Pipeline.

config_file
[, default= None] Configuration file.

KafkaTopicInitializer.include_topics_from_file(topics_file: str)
Includes topics from a topic file.

Parameters
topics_file:str

[str] Name of a topic file we wanted to include.

KafkaTopicInitializer.include_topics_from_config(config_object)
Includes topics using a config

Parameters
config_object

[JSON] config object containing information about what topics we want to include.

KafkaTopicInitializer.fetch_existing_topics()

???

2.3. Reference Documentation 113

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

KafkaTopicInitializer.check_and_initialize()

Initializes new topics and logs a warning.

KafkaTopicInitializer.initialize_topics()

Initializes topics ??

Elastic Search

Elastic Search is a Analytics and full-text search engine. Commonly used for Application Performance Management
mainly Analysis of Logs.

Source

ElasticSearchSource is using standard Elastic’s search API to fetch data.

configs
index - Elastic’s index (default is ‘index-*’).

scroll_timeout - Timeout of single scroll request (default is ‘1m’). Allowed time units: https://www.elastic.
co/guide/en/elasticsearch/reference/current/common-options.html#time-units

specific pamameters
paging - boolean (default is True)

request_body - dictionary described by Elastic’s doc: https://www.elastic.co/guide/en/elasticsearch/
reference/current/search-request-body.html

Default is:

default_request_body = {
'query': {

'bool': {
'must': {

'match_all': {}
}

}
},

}

class ElasticSearchSource(app, pipeline, connection, request_body=None, paging=True, id=None,
config=None)

Bases: TriggerSource

Description:

ElasticSearchSource.__init__()

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

connection
[Connection] Information of the connection.

114 Chapter 2. How to install BitSwan

https://en.wikipedia.org/wiki/Application_performance_management
https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units
https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html
https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

request_body JSON, default = None
Request body needed for the request API call.

paging : ?, default = True

id
[ID, default = None] ID

config
[JSON/dict, default = None] Configuration file with additional information.

Source Methods

async ElasticSearchSource.cycle()

Gets data from Elastic and injects them into the pipeline.

ElasticSearch Aggs Source

ElasticSearchAggsSource is used for Elastic’s search aggregations.

configs
index: - Elastic’s index (default is ‘index-*’).

specific pamameters
request_body dictionary described by Elastic’s doc: https://www.elastic.co/guide/en/elasticsearch/
reference/current/search-request-body.html

Default is:

default_request_body = {
'query': {

'bool': {
'must': {

'match_all': {}
}

}
},

}

class ElasticSearchAggsSource(app, pipeline, connection, request_body=None, id=None, config=None)
Bases: TriggerSource

Description:

ElasticSearchAggsSource.__init__()

Description:

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

connection
[Connection] Information of the connection.

2.3. Reference Documentation 115

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html
https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

request_body JSON, default = None
Request body needed for the request API call.

id
[ID, default = None] ID info

config
[JSON/dict, default = None] configuration file with additional information.

ElasticSearch Aggs Source Methods

async ElasticSearchAggsSource.cycle()

Sets request body and path to create query call.

async ElasticSearchAggsSource.process_aggs(path, aggs_name, aggs)
Description:

Parameters
path :

aggs_name :

agss :

async ElasticSearchAggsSource.process_buckets(path, parent, buckets)
Recursive function for buckets processing. It iterates through keys of the dictionary, looking for ‘buckets’ or
‘value’. If there are ‘buckets’, calls itself, if there is ‘value’, calls process_aggs and sends an event to process

Parameters
path :

parent :

buckets :

ElasticSearch Connection

ElasticSearchConnection allows your ES source, sink or lookup to connect to ElasticSearch instance

usage:

adding connection to PumpService
svc = app.get_service("bspump.PumpService")
svc.add_connection(

bspump.elasticsearch.ElasticSearchConnection(app, "ESConnection")
)

pass connection name ("ESConnection" in our example) to relevant BSPump's object:

self.build(
(continues on next page)

116 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

(continued from previous page)

bspump.kafka.KafkaSource(app, self, "KafkaConnection"),
bspump.elasticsearch.ElasticSearchSink(app, self, "ESConnection")

)

class ElasticSearchConnection(app, id=None, config=None)
Bases: Connection

Description:

Sample Config
url

[‘’http’://{ip/localhost}:{port}’] URL of the source. Could be multi-URL. Each URL should be separated
by ‘;’ to a node in ElasticSearch cluster.

username
[‘string’ , default = ‘ ‘] Used when authentication is required

password
[‘string’, default = ‘ ‘] Used when authentication is required

loader_per_url
[int, default = 4] Number of parallel loaders per URL.

output_queue_max_size
[int, default = 10] Maximum queue size.

bulk_out_max_size
[? * ? * ?, default = 12 * 1024 * 1024] ??

timeout
[int, default = 300] Timout value.

fail_log_max_size
[int, default = 20] Maximum size of failed log messages.

precise_error_handling
[bool, default = False] If True all Errors will be logged, If false soft errors will be omitted in the Logs.

ElasticSearchConnection.__init__()

Description:

Parameters
app

[Application] Name of the Application

id
[ID, default= None] ID

config
[JSON or dict, default= None] configuration file with additional information for the methods.

2.3. Reference Documentation 117

BSPump Reference Documentation Documentation, Release v1903

ElasticSearch Connection Methods

ElasticSearchConnection.get_url()

Returns
list of URLS of nodes connected to the cluster

ElasticSearchConnection.get_session()

Returns current Client Session Authentication and Loop

Returns
aiohttp.ClientSession(auth=self._auth, loop=self.Loop)

ElasticSearchConnection.consume(index, data_feeder_generator, bulk_class=<class
'bspump.elasticsearch.connection.ElasticSearchBulk'>)

Checks the content of data_feeder_generator and bulk and if There is data to be send it calls enqueue method.

Parameters
index :

data_feeder_generator :

bulk_class=ElasticSearchBulk :
creates a instance of the ElasticSearchBulk class

ElasticSearchConnection.flush(forced=False)
It goes through the list of bulks and calls enqueue for each of them.

Parameters
forced : bool, default = False

ElasticSearchConnection.enqueue(bulk)
Properly enqueue the bulk.

Parameters
bulk :

Elastic Search Bulk

class ElasticSearchBulk(connection, index, max_size)
Bases: object

Description:

ElasticSearchBulk.__init__()

Initializes the variables

Parameters
connection

[Connection] Name of the Connection.

index
[str] ???

max_size
[int] Maximal size of bulks.

118 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Elastic Search Bulk Methods

ElasticSearchBulk.consume(data_feeder_generator)
Appends all items in data_feeder_generator to Items list. Consumer also resets Aging and Capacity.

Parameters
data_feeder_generator

[list] list of our data that will be passed to a generator and later Uploaded to ElasticSearch.

Returns
self.Capacity <= 0

async ElasticSearchBulk.upload(url, session, timeout)
Uploads data to Elastic Search.

Parameters
url

[string] Uses URL from config to connect to ElasticSearch Rest API.

session
[?] ?

timeout
[int] uses timout value from config. Value of time for how long we want to be connected to ElasticSearch.

Returns
?

ElasticSearchBulk.partial_error_callback(response_items)
Description: When an upload to ElasticSearch fails for error items (document could not be inserted), this callback
is called.

Parameters
response_items :

Parameters
response_items – list with dict items: {“index”: {“_id”: . . . , “error”: . . . }}

ElasticSearchBulk.full_error_callback(bulk_items, return_code)
Description: When an upload to ElasticSearch fails b/c of ElasticSearch error, this callback is called.

Parameters
bulk_items

[list] list with tuple items: (_id, data)

return_code :
ElasticSearch return code

Returns
False if the bulk is to be resumbitted again

2.3. Reference Documentation 119

BSPump Reference Documentation Documentation, Release v1903

Lookup

class ElasticSearchLookup(app, connection, id=None, config=None, cache=None, lazy=False)
Bases: MappingLookup, AsyncLookupMixin

The lookup that is linked with a ES. It provides a mapping (dictionary-like) interface to pipelines. It feeds lookup
data from ES using a query. It also has a simple cache to reduce a number of database hits.

configs
index - Elastic’s index

key - field name to match

scroll_timeout - Timeout of single scroll request (default is ‘1m’). Allowed time units: https://www.elastic.co/
guide/en/elasticsearch/reference/current/common-options.html#time-units

Example:

The ElasticSearchLookup can be then located and used inside a custom enricher:

class AsyncEnricher(bspump.Generator):

def __init__(self, app, pipeline, id=None, config=None):
super().__init__(app, pipeline, id, config)
svc = app.get_service("bspump.PumpService")
self.Lookup = svc.locate_lookup("MySQLLookup")

async def generate(self, context, event, depth):
if 'user' not in event:

return None

info = await self.Lookup.get(event['user'])

Inject a new event into a next depth of the pipeline
self.Pipeline.inject(context, event, depth)

ElasticSearchLookup.__init__()

Description:

Parameters
app

[Application] Name of the Application.

connection
[Connection] Name of the Connection

id
[ID, default= None] ID

config
[JSON, default= None] Configuration file with additional information.

cache : ?,default= None

lazy : ?, default= None

120 Chapter 2. How to install BitSwan

https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units
https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units

BSPump Reference Documentation Documentation, Release v1903

Lookup methods

async ElasticSearchLookup.get(key)
Obtain the value from lookup asynchronously.

Parameters
key : ?

Returns
value

ElasticSearchLookup.build_find_one_query(key)→ dict
Override this method to build your own lookup query

Parameters
key : ?

Returns
Default single-key query

async ElasticSearchLookup.load()

Sets the length of Cache to Count.

Returns
True

classmethod ElasticSearchLookup.construct(app, definition: dict)
Constructs config, id, and connection based on config.

Parameters
app

[Application] Name of the Application.

definition:dict
[Definition] Definition containing information about certain variables.

Returns
cls(app, newid, connection, config)

2.3. Reference Documentation 121

BSPump Reference Documentation Documentation, Release v1903

Sink

class ElasticSearchSink(app, pipeline, connection, id=None, config=None, bulk_class=<class
'bspump.elasticsearch.connection.ElasticSearchBulk'>, data_feeder=<function
data_feeder_create_or_index>)

Bases: Sink

ElasticSearchSink allows you to insert events into ElasticSearch through POST requests

The following attributes can be passed to the context and thus override the default behavior of the
sink:

es_index (STRING): ElasticSearch index name

data_feeder accepts the event as its only parameter and yields data as Python generator The example
implementation is:

def data_feeder_create_or_index(event):
_id = event.pop(“_id”, None)

if _id is None:
yield b’{“create”:{}}

‘
else:

yield orjson.dumps(
{“index”: {“_id”: _id}}, option=orjson.OPT_APPEND_NEWLINE

)

yield orjson.dumps(event, option=orjson.OPT_APPEND_NEWLINE)

ElasticSearchSink.__init__()

Description:

Parameters
app

[Application] Name of the Application

pipeline
[Pipeline] Name of the Pipeline

connection
[Connection] Name of the Connection

id
[ID, default= None] ID

config
[JSON, default= None] Configuration file with additional information.

bulk_class=ElasticBulk :

data_feeder=data_feeder_create_or_index :

122 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Sink methods

ElasticSearchSink.process(context, event)
Description:

Parameters
context :

event
[any data type] Information with timestamp.

Data Feeder Methods

data_feeder.data_feeder_create_or_index()

Creates an index.

Parameters
event

[Data with time stamp stored in any data type usually is in JSON.] You can specify an event that is passed
to the method.

data_feeder.data_feeder_create()

Creates a data feeder.

Parameters
event

[Data with time stamp stored in any data type usually is in JSON.] You can specify an event that is passed
to the method.

data_feeder.data_feeder_index()

Description:

Parameters
event

[Data with time stamp stored in any data type usually is in JSON.] You can specify an event that is passed
to the method.

data_feeder.data_feeder_update()

Updates data feeder.

Parameters
event

[Data with time stamp stored in any data type usually is in JSON.] You can specify an event that is passed
to the method.

data_feeder.data_feeder_delete()

Deletes data feeder.

Parameters

2.3. Reference Documentation 123

BSPump Reference Documentation Documentation, Release v1903

event
[Data with time stamp stored in any data type usually is in JSON.] You can specify an event that is passed
to the method.

Files

File ABC Source

class FileABCSource(app, pipeline, id=None, config=None)
Bases: TriggerSource

Description:

FileABCSource.__init__()

Description:

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

id
[ID, default = None] ID

config
[JSON, default = None] Configuration file with additional information.

File ABC Source Methods

async FileABCSource.cycle()

Cycles through a file.

async FileABCSource.simulate_event()

The simulate_event method should be called in read method after a file line has been processed.

It ensures that all other asynchronous events receive enough time to perform their tasks. Otherwise, the applica-
tion loop is blocked by a file reader and no other activity makes a progress.

async FileABCSource.read(filename, f)
Description: Override this method to implement your File Source. f is an opened file object.

Parameters
filename

[file] Name of the file.

f :

124 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

File Block Source

class FileBlockSource(app, pipeline, id=None, config=None)
Bases: FileABCSource

Description:

FileBlockSource.__init__()

Description:

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

id
[ID, default = None] ID

config
[JSON, default = None] Configuration file with additional information.

async FileBlockSource.read(filename, f)
Loads a file.

Parameters
filename

[file] Name of the file.

f :

File Block Sink

class FileBlockSink(app, pipeline, id=None, config=None)
Bases: Sink

Description:

** Config Defaults **

path : ‘’

mode : wb

flags : O_CREAT

FileBlockSink.__init__()

Parameters
app

[Application] Name of the Application

pipeline
[Pipeline] Name of the Pipeline.

id
[ID, default = None] ID

2.3. Reference Documentation 125

BSPump Reference Documentation Documentation, Release v1903

config
[JSON, default = None] Configuration file with additional information.

FileBlockSink.get_file_name(context, event)
Override this method to gain control over output file name.

Parameters
context :

event
[any type] a single unit of information that is propagated through the pipeline

Returns
config path

FileBlockSink.process(context, event)
Opens a file.

Parameters
context :

event
[any type] a single unit of information that is propagated through the pipeline

File csv Source

class FileCSVSource(app, pipeline, fieldnames=None, id=None, config=None)
Bases: FileABCSource

Description:

FileCSVSource.__init__()

Description:

Parameters
app

[Application] Name of the Application.

pipeline
[Pipeline] Name of the Pipeline.

id
[ID, default = None] ID

config
[JSON, default = None] Configuration file with additional information.

FileCSVSource.reader(f)
Description:

Parameters
f :

126 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Returns
??

async FileCSVSource.read(filename, f)
Description:

Parameters
filename :

f :

File csv Sink

class FileCSVSink(app, pipeline, id=None, config=None)
Bases: Sink

Description:

** Default Config**

path : ‘’

dialect : ‘excel’

delimiter : ‘,’

doublequote : True

escapechar : “”

lineterminator : os.linesep

quotechar : ‘”’

quoting : csv.QUOTE_MINIMAL

skipinitialspace : False

strict : False

FileCSVSink.__init__()

Description:

FileCSVSink.get_file_name(context, event)
Description: Override this method to gain control over output file name.

Parameters
context :

event :

Returns
path of context and config

2.3. Reference Documentation 127

BSPump Reference Documentation Documentation, Release v1903

FileCSVSink.writer(f, fieldnames)
Description:

Parameters
f :

fieldnames
[file] Name of the file.

Returns
dialect and fieldnames

FileCSVSink.process(context, event)
Description:

Parameters
context :

event
[any data type] Information with timestamp.

FileCSVSink.rotate()

Description: Call this to close the currently open file.

File json Source

class FileJSONSource(app, pipeline, id=None, config=None)
Bases: FileABCSource

Description: This file source is optimized to load even large JSONs from a file and parse that. The loading &
parsing is off-loaded to the worker thread so that it doesn’t block the IO loop.

FileJSONSource.__init__()

Description:

Parameters
app :

pipeline :

id
[ID, default= None] ID

config
[JSON, default = None] configuration file with additional information

async FileJSONSource.read(filename, f)
Description:

Parameters
filename :

f :

128 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

File line Source

class FileLineSource(app, pipeline, id=None, config=None)
Bases: FileABCSource

Description:

FileLineSource.__init__()

Description:

Parameters
app: Application

Name of the Application

pipeline
[Pipeline] Name of the Pipeline

id : ID, default = None

config
[JSON, default = None] Configuration file with additional information

async FileLineSource.read(filename, f)
Description:

Parameters
filename :

f :

File Multiline Source

class FileMultiLineSource(app, pipeline, separator, id=None, config=None)
Bases: FileABCSource

Description: Read file line by line but try to join multi-line events by separator. Separator is a (fixed) pattern that
should present at the begin of the line, if it is a new event.

Example: <133>1 2018-03-24T02:37:01+00:00 machine program 22068 - Start of the multiline event

2nd line of the event 3rd line of the event

<133>1 2018-03-24T02:37:01+00:00 machine program 22068 - New event

The separatpr is ‘<’ string in this case

2.3. Reference Documentation 129

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

FileMultiLineSource.__init__()

Description:

Parameters
app: Application

Name of the Application

pipeline
[Pipeline] Name of the Pipeline

separator :

id : ID, default = None

config
[JSON, default = None] Configuration file with additional information

async FileMultiLineSource.read(filename, f)
Description:

Parameters
filename :

f :

Lookup Provider

class FileBatchLookupProvider(lookup, url, id=None, config=None)
Bases: LookupBatchProviderABC

Loads lookup data from a file on local filesystem.

FileBatchLookupProvider.__init__()

Description:

async FileBatchLookupProvider.load()

Description:

Returns
result

FileBatchLookupProvider.load_on_thread()

Description:

130 Chapter 2. How to install BitSwan

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

InfluxDB

Connection

class InfluxDBConnection(app, id=None, config=None)
Bases: Connection

Description: InfluxDBConnection serves to connect BSPump application with an InfluxDB database.
The InfluxDB server is accessed via URL, and the database is specified using the db parameter in the
configuration.

app = bspump.BSPumpApplication()
svc = app.get_service("bspump.PumpService")
svc.add_connection(

bspump.influxdb.InfluxDBConnection(app, "InfluxConnection1")
)

Config Default

url : http://localhost:8086/

db : mydb

output_queue_max_size : 10

output_bucket_max_size : 1000 * 1000

timout : 30

retry_enabled : False

response_codes_to_retry : 404, 502, 503, 504

InfluxDBConnection.__init__()

Description:

Parameters
app

[Application] Name of the Application.

id : ID, default = None

config
[JSON, default = None] Configuration file with additional information.

2.3. Reference Documentation 131

BSPump Reference Documentation Documentation, Release v1903

Sink

class InfluxDBSink(app, pipeline, connection, id=None, config=None)
Bases: Sink

Description: InfluxDBSink is a sink processor, that stores the event into an InfluxDB database speci-
fied in the InfluxDBConnection object.

class SamplePipeline(bspump.Pipeline):

def __init__(self, app, pipeline_id):
super().__init__(app, pipeline_id)
self.build(

bspump.socket.TCPStreamSource(app, self, config={'port':␣
→˓7000}),

bspump.influxdb.InfluxDBSink(app, self, "InfluxConnection1")
)

InfluxDBSink.__init__()

Description:

Parameters
app :

pipeline :

connection :

id : ID, default = None

config : str,JSON, default = None

InfluxDBSink.process(context, event)
Description:

Parameters
context :

event
[any data type] Information with timestamp.

IPC and Socket

Datagram

class DatagramSource(app, pipeline, id=None, config=None)
Bases: Source

Description:

DatagramSource.__init__()

Description:

async DatagramSource.main()

Description:

132 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Datagram sink

class DatagramSink(app, pipeline, id=None, config=None)
Bases: Sink

Description:

DatagramSink.__init__()

Description:

DatagramSink.process(context, event)
Description:

Protocol

class SourceProtocolABC(app, pipeline, config)
Bases: object

Source protocol is a handler class, that basically gets the socket (in reader) and extract the payload from it in a
way that is conformant to expected protocol.

That is happening in the handle() method. The output is to be shipped to source.process() method.

SourceProtocolABC.__init__()

Description:

async SourceProtocolABC.handle(source, stream, context)
Description:

Line Source Protocol

class LineSourceProtocol(app, pipeline, config)
Bases: SourceProtocolABC

Description: Basically readline() for reading lines from a socket.

LineSourceProtocol.__init__()

Description:

async LineSourceProtocol.handle(source, stream, context)
Description:

Stream

class Stream(loop, socket, outbound_queue=None)
Bases: object

Description: This object represent a client connection. It is unencrypted STREAM socket.

Stream.__init__()

async Stream.recv_into(buf)

Stream.send(data)

2.3. Reference Documentation 133

BSPump Reference Documentation Documentation, Release v1903

async Stream.outbound()

Handle outbound direction

async Stream.close()

TLS Stream

class TLSStream(loop, sslcontext, socket, server_side: bool)
Bases: object

Description: This object represent a TLS client connection. It is encrypted SSL/TLS socket abstraction.

TLSStream.__init__()

Description:

async TLSStream.recv_into(buf)
Description:

TLSStream.send(data)
Description:

async TLSStream.outbound()

Handle outbound direction

async TLSStream.close()

Description:

Steam Server Source

class StreamServerSource(app, pipeline, id=None, config=None, protocol_class=<class
'bspump.ipc.protocol.LineSourceProtocol'>)

Bases: Source

Description:

StreamServerSource.__init__()

Description:

StreamServerSource.start(loop)
Description:

async StreamServerSource.stop()

Description:

async StreamServerSource.main()

Description:

134 Chapter 2. How to install BitSwan

BSPump Reference Documentation Documentation, Release v1903

Stream Client Sink

class StreamClientSink(app, pipeline, id=None, config=None)
Bases: Sink

Description:

StreamClientSink.__init__()

Description:

StreamClientSink.process(context, event)
Description:

FTP

connection

source

RabbitMQ / AMQP

Source

class AMQPSource(app, pipeline, connection, id=None, config=None)
Bases: Source

Description:

AMQPSource.__init__()

Set the initial ID, Pipeline and Task.

Parameters
app

[Application] Name of an Application <https://asab.readthedocs.io/en/latest/asab/application.html#>`_ .

pipeline
[address of a pipeline] Name of a Pipeline.

id
[str, default None] Name of a the Pipeline.

config
[compatible config type , default None] Option for adding a configuration file.

async AMQPSource.main()

Description:

async AMQPSource.process_message(method, properties, body)
Description:

classmethod AMQPSource.construct(app, pipeline, definition: dict)
Description:

2.3. Reference Documentation 135

https://asab.readthedocs.io/en/latest/asab/application

BSPump Reference Documentation Documentation, Release v1903

AMQP Full Message Source

class AMQPFullMessageSource(app, pipeline, connection, id=None, config=None)
Bases: AMQPSource

Description:

AMQPFullMessageSource.process_message(method, properties, body)
Description:

Sink

class AMQPSink(app, pipeline, connection, id=None, config=None)
Bases: Sink

AMQPSink.__init__()

Initializes the Parameters

Parameters
app

[object] Application object.

pipeline
[Pipeline] Name of the Pipeline.

id
[str, default=None,] ID of the class of config.

config
[JSON, or other compatible formats, default=None] Configuration file.

AMQPSink.process(context, event)
Can be implemented to return event based on a given logic.

Parameters
context :

Additional information passed to the method.

event
[Data with time stamp stored in any data type, usually it is in JSON.] You can specify an event that is passed
to the method.

Connection

class AMQPConnection(app, id=None, config=None)
Bases: Connection

AMQPConnection.__init__()

Description:

Parameters
app

[Application] Specification of an Application.

id : default None

136 Chapter 2. How to install BitSwan

https://asab.readthedocs.io/en/latest/asab/application.html

BSPump Reference Documentation Documentation, Release v1903

config
[JSON or other compatible format, default None] It contains important information and data responsible
for creating a connection.

2.3. Reference Documentation 137

BSPump Reference Documentation Documentation, Release v1903

138 Chapter 2. How to install BitSwan

PYTHON MODULE INDEX

b
bspump, 61

139

BSPump Reference Documentation Documentation, Release v1903

140 Python Module Index

INDEX

Symbols
__getitem__() (DictionaryLookup method), 104
__init__() (AMQPConnection method), 136
__init__() (AMQPSink method), 136
__init__() (AMQPSource method), 135
__init__() (AggregationStrategy method), 76
__init__() (Aggregator method), 78
__init__() (Analyzer method), 101
__init__() (Anomaly method), 106
__init__() (BSPumpApplication method), 72
__init__() (BSPumpService method), 73
__init__() (BytesToStringParser method), 80
__init__() (Connection method), 71
__init__() (CySimdJsonParser method), 83
__init__() (DatagramSink method), 133
__init__() (DatagramSource method), 132
__init__() (DictToJsonBytesParser method), 85
__init__() (DictionaryLookup method), 104
__init__() (DirectSource method), 92
__init__() (ElasticSearchAggsSource method), 115
__init__() (ElasticSearchBulk method), 118
__init__() (ElasticSearchConnection method), 117
__init__() (ElasticSearchLookup method), 120
__init__() (ElasticSearchSink method), 122
__init__() (ElasticSearchSource method), 114
__init__() (FileABCSource method), 124
__init__() (FileBatchLookupProvider method), 130
__init__() (FileBlockSink method), 125
__init__() (FileBlockSource method), 125
__init__() (FileCSVSink method), 127
__init__() (FileCSVSource method), 126
__init__() (FileJSONSource method), 128
__init__() (FileLineSource method), 129
__init__() (FileMultiLineSource method), 129
__init__() (Generator method), 100
__init__() (InfluxDBConnection method), 131
__init__() (InfluxDBSink method), 132
__init__() (InternalSource method), 92
__init__() (IteratorGenerator method), 82
__init__() (IteratorSource method), 82
__init__() (KafkaBatchSink method), 112
__init__() (KafkaConnection method), 107

__init__() (KafkaKeyFilter method), 111
__init__() (KafkaSink method), 110
__init__() (KafkaSource method), 109
__init__() (KafkaTopicInitializer method), 113
__init__() (LineSourceProtocol method), 133
__init__() (ListAggregationStrategy method), 76
__init__() (Lookup method), 103
__init__() (LookupBatchProviderABC method), 106
__init__() (LookupProviderABC method), 105
__init__() (MappingLookup method), 104
__init__() (MappingTransformator method), 98
__init__() (PPrintContextProcessor method), 91
__init__() (PPrintProcessor method), 90
__init__() (PPrintSink method), 88
__init__() (PrintContextProcessor method), 90
__init__() (PrintProcessor method), 89
__init__() (PrintSink method), 88
__init__() (Processor method), 69
__init__() (RouterMixIn method), 93
__init__() (RouterProcessor method), 95
__init__() (RouterSink method), 94
__init__() (Sink method), 71
__init__() (Source method), 65, 66
__init__() (SourceProtocolABC method), 133
__init__() (Stream method), 133
__init__() (StreamClientSink method), 135
__init__() (StreamServerSource method), 134
__init__() (StringAggregationStrategy method), 77
__init__() (StringToBytesParser method), 79
__init__() (TLSStream method), 134
__init__() (TeeProcessor method), 96
__init__() (TeeSource method), 96
__init__() (TimeZoneNormalizer method), 97
__init__() (TriggerSource method), 68
__len__() (DictionaryLookup method), 104
__repr__() (Processor method), 70

A
add_connection() (BSPumpService method), 74
add_connections() (BSPumpService method), 74
add_lookup() (BSPumpService method), 74
add_lookup_factory() (BSPumpService method), 75

141

BSPump Reference Documentation Documentation, Release v1903

add_lookups() (BSPumpService method), 74
add_matrix() (BSPumpService method), 75
add_matrixes() (BSPumpService method), 75
add_pipeline() (BSPumpService method), 73
add_pipelines() (BSPumpService method), 73
AggregationStrategy (class in

bspump.common.aggregator), 76
Aggregator (class in bspump.common), 78
AMQPConnection (class in bspump.amqp.connection),

136
AMQPFullMessageSource (class in

bspump.amqp.source), 136
AMQPSink (class in bspump.amqp.sink), 136
AMQPSource (class in bspump.amqp.source), 135
analyze() (Analyzer method), 101
Analyzer (class in bspump), 101
Anomaly (class in bspump), 106
append() (AggregationStrategy method), 76
append() (ListAggregationStrategy method), 77
append() (StringAggregationStrategy method), 78
append_processor() (Pipeline method), 60
AsyncLookupMixin (class in bspump.abc.lookup), 104

B
bind() (TeeProcessor method), 97
bind() (TeeSource method), 96
bspump

module, 61
BSPumpApplication (class in bspump), 72
BSPumpService (class in bspump), 73
build() (MappingTransformator method), 99
build() (Pipeline method), 60, 61
build_find_one_query() (ElasticSearchLookup

method), 121
BytesToStringParser (class in bspump.common), 80

C
check_and_initialize() (KafkaTopicInitializer

method), 113
close() (Stream method), 134
close() (TLSStream method), 134
Connection (class in bspump), 71
construct() (AMQPSource class method), 135
construct() (ElasticSearchLookup class method), 121
construct() (Processor class method), 70
construct() (Source class method), 67
consume() (ElasticSearchBulk method), 119
consume() (ElasticSearchConnection method), 118
create_argument_parser() (BSPumpApplication

method), 72
create_consumer() (KafkaConnection method), 107
create_consumer() (KafkaSource method), 109
create_eps_counter() (Pipeline method), 64
create_producer() (KafkaConnection method), 107

cycle() (ElasticSearchAggsSource method), 116
cycle() (ElasticSearchSource method), 115
cycle() (FileABCSource method), 124
cycle() (IteratorSource method), 82
cycle() (TriggerSource method), 69
CySimdJsonParser (class in bspump.common), 83

D
data_feeder_create() (data_feeder method), 123
data_feeder_create_or_index() (data_feeder

method), 123
data_feeder_delete() (data_feeder method), 123
data_feeder_index() (data_feeder method), 123
data_feeder_update() (data_feeder method), 123
DatagramSink (class in bspump.ipc.datagram), 133
DatagramSource (class in bspump.ipc.datagram), 132
del_pipeline() (BSPumpService method), 74
deserialize() (DictionaryLookup method), 105
deserialize() (Lookup method), 103
DictionaryLookup (class in bspump.abc.lookup), 104
DictToJsonBytesParser (class in bspump.common),

85
DirectSource (class in bspump.common), 91
dispatch() (RouterMixIn method), 94

E
ElasticSearchAggsSource (class in

bspump.elasticsearch), 115
ElasticSearchBulk (class in

bspump.elasticsearch.connection), 118
ElasticSearchConnection (class in

bspump.elasticsearch), 117
ElasticSearchLookup (class in bspump.elasticsearch),

120
ElasticSearchSink (class in bspump.elasticsearch),

122
ElasticSearchSource (class in bspump.elasticsearch),

114
enqueue() (ElasticSearchConnection method), 118
ensure_future() (Pipeline method), 64
ensure_future_update() (Lookup method), 103
evaluate() (Analyzer method), 102

F
fetch_existing_topics() (KafkaTopicInitializer

method), 113
FileABCSource (class in bspump.file.fileabcsource), 124
FileBatchLookupProvider (class in

bspump.file.lookupprovider), 130
FileBlockSink (class in bspump.file.fileblocksink), 125
FileBlockSource (class in bspump.file.fileblocksource),

125
FileCSVSink (class in bspump.file.filecsvsink), 127
FileCSVSource (class in bspump.file.filecsvsource), 126

142 Index

BSPump Reference Documentation Documentation, Release v1903

FileJSONSource (class in bspump.file.filejsonsource),
128

FileLineSource (class in bspump.file.filelinesource),
129

FileMultiLineSource (class in
bspump.file.filelinesource), 129

finalize() (BSPumpService method), 75
flatten() (FlattenDictProcessor method), 81
FlattenDictProcessor (class in bspump.common), 80
flush() (AggregationStrategy method), 76
flush() (Aggregator method), 79
flush() (ElasticSearchConnection method), 118
flush() (ListAggregationStrategy method), 77
flush() (StringAggregationStrategy method), 78
full_error_callback() (ElasticSearchBulk method),

119

G
generate() (Aggregator method), 79
generate() (Generator method), 100
generate() (IteratorGenerator method), 83
generate() (MappingKeysGenerator method), 87
Generator (class in bspump), 100
get() (ElasticSearchLookup method), 121
get_bootstrap_servers() (KafkaConnection

method), 108
get_compression() (KafkaConnection method), 108
get_file_name() (FileBlockSink method), 126
get_file_name() (FileCSVSink method), 127
get_session() (ElasticSearchConnection method), 118
get_throttles() (Pipeline method), 61
get_url() (ElasticSearchConnection method), 118

H
handle() (LineSourceProtocol method), 133
handle() (SourceProtocolABC method), 133
handle_error() (Pipeline method), 62
HexlifyProcessor (class in bspump.common), 81

I
include_topics() (KafkaTopicInitializer method), 113
include_topics_from_config() (KafkaTopicInitial-

izer method), 113
include_topics_from_file() (KafkaTopicInitializer

method), 113
InfluxDBConnection (class in

bspump.influxdb.connection), 131
InfluxDBSink (class in bspump.influxdb.sink), 132
initialize() (BSPumpService method), 75
initialize_consumer() (KafkaSource method), 109
initialize_topics() (KafkaTopicInitializer method),

114
inject() (Pipeline method), 63
insert_after() (Pipeline method), 60

insert_before() (Pipeline method), 60
InternalSource (class in bspump.common), 92
is_empty() (AggregationStrategy method), 76
is_empty() (ListAggregationStrategy method), 77
is_empty() (StringAggregationStrategy method), 78
is_error() (Pipeline method), 62
is_master() (Lookup method), 103
is_ready() (Pipeline method), 63
iter_processors() (Pipeline method), 61
IteratorGenerator (class in bspump.common), 82
IteratorSource (class in bspump.common), 82

K
KafkaBatchSink (class in bspump.kafka.batchsink), 112
KafkaConnection (class in bspump.kafka.connection),

106
KafkaKeyFilter (class in bspump.kafka.keyfilter), 111
KafkaSink (class in bspump.kafka.sink), 109
KafkaSource (class in bspump.kafka.source), 108
KafkaTopicInitializer (class in

bspump.kafka.topic_initializer), 112

L
LineSourceProtocol (class in bspump.ipc.protocol),

133
link() (Pipeline method), 63
ListAggregationStrategy (class in

bspump.common), 76
load() (ElasticSearchLookup method), 121
load() (FileBatchLookupProvider method), 130
load() (Lookup method), 103
load() (LookupProviderABC method), 105
load_on_thread() (FileBatchLookupProvider

method), 130
locate() (BSPumpService method), 73
locate() (RouterMixIn method), 94
locate_address() (Processor method), 70
locate_address() (Source method), 67
locate_connection() (BSPumpService method), 74
locate_connection() (Pipeline method), 64
locate_lookup() (BSPumpService method), 74
locate_matrix() (BSPumpService method), 75
locate_processor() (Pipeline method), 65
locate_source() (Pipeline method), 64
Lookup (class in bspump), 102
LookupBatchProviderABC (class in

bspump.abc.lookupprovider), 106
LookupProviderABC (class in

bspump.abc.lookupprovider), 105

M
main() (AMQPSource method), 135
main() (BSPumpApplication method), 72

Index 143

BSPump Reference Documentation Documentation, Release v1903

main() (DatagramSource method), 132
main() (DirectSource method), 92
main() (InternalSource method), 93
main() (KafkaSource method), 109
main() (Source method), 67
main() (StreamServerSource method), 134
main() (TeeSource method), 96
main() (TriggerSource method), 68
MappingItemsProcessor (class in bspump.common),

87
MappingKeysGenerator (class in bspump.common), 87
MappingKeysProcessor (class in bspump.common), 86
MappingLookup (class in bspump), 104
MappingTransformator (class in bspump.common), 98
MappingValuesProcessor (class in bspump.common),

86
module

bspump, 61

N
normalize() (TimeZoneNormalizer method), 98
NullSink (class in bspump.common), 87

O
on() (TriggerSource method), 68
on_clock_tick() (Analyzer method), 102
outbound() (Stream method), 133
outbound() (TLSStream method), 134

P
parse_arguments() (BSPumpApplication method), 72
partial_error_callback() (ElasticSearchBulk

method), 119
Pipeline (class in bspump), 59
PPrintContextProcessor (class in bspump.common),

91
PPrintProcessor (class in bspump.common), 90
PPrintSink (class in bspump.common), 88
predicate() (Analyzer method), 102
PrintContextProcessor (class in bspump.common),

90
PrintProcessor (class in bspump.common), 89
PrintSink (class in bspump.common), 88
process() (Aggregator method), 79
process() (AMQPSink method), 136
process() (Analyzer method), 102
process() (BytesToStringParser method), 80
process() (CySimdJsonParser method), 84
process() (DatagramSink method), 133
process() (DictToJsonBytesParser method), 85
process() (ElasticSearchSink method), 123
process() (FileBlockSink method), 126
process() (FileCSVSink method), 128
process() (FlattenDictProcessor method), 81

process() (Generator method), 100
process() (HexlifyProcessor method), 82
process() (InfluxDBSink method), 132
process() (KafkaBatchSink method), 112
process() (KafkaKeyFilter method), 111
process() (KafkaSink method), 111
process() (MappingItemsProcessor method), 87
process() (MappingKeysProcessor method), 86
process() (MappingTransformator method), 99
process() (MappingValuesProcessor method), 86
process() (NullSink method), 88
process() (Pipeline method), 63
process() (PPrintContextProcessor method), 91
process() (PPrintProcessor method), 90
process() (PPrintSink method), 89
process() (PrintContextProcessor method), 91
process() (PrintProcessor method), 89
process() (PrintSink method), 88
process() (Processor method), 70
process() (Source method), 66
process() (StdDictToJsonParser method), 84
process() (StdJsonToDictParser method), 85
process() (StreamClientSink method), 135
process() (StringToBytesParser method), 80
process() (TeeProcessor method), 97
process() (TimeZoneNormalizer method), 98
process_aggs() (ElasticSearchAggsSource method),

116
process_buckets() (ElasticSearchAggsSource

method), 116
process_message() (AMQPFullMessageSource

method), 136
process_message() (AMQPSource method), 135
Processor (class in bspump), 69
put() (DirectSource method), 92
put() (InternalSource method), 93
put_async() (InternalSource method), 93

R
read() (FileABCSource method), 124
read() (FileBlockSource method), 125
read() (FileCSVSource method), 127
read() (FileJSONSource method), 128
read() (FileLineSource method), 129
read() (FileMultiLineSource method), 130
reader() (FileCSVSource method), 126
ready() (Pipeline method), 63
recv_into() (Stream method), 133
recv_into() (TLSStream method), 134
remove_processor() (Pipeline method), 60
rest_get() (DictionaryLookup method), 105
rest_get() (InternalSource method), 93
rest_get() (Processor method), 70
rest_get() (TriggerSource method), 69

144 Index

BSPump Reference Documentation Documentation, Release v1903

restart() (Source method), 67
rotate() (FileCSVSink method), 128
route() (RouterMixIn method), 94
RouterMixIn (class in bspump.common.routing), 93
RouterProcessor (class in bspump.common), 95
RouterSink (class in bspump.common), 94

S
send() (Stream method), 133
send() (TLSStream method), 134
serialize() (DictionaryLookup method), 104
serialize() (Lookup method), 103
set() (DictionaryLookup method), 105
set_depth() (Generator method), 100
set_error() (Pipeline method), 62
set_source() (Pipeline method), 60
simulate_event() (FileABCSource method), 124
Sink (class in bspump), 71
Source (class in bspump.abc.source), 65, 66
SourceProtocolABC (class in bspump.ipc.protocol),

133
start() (Pipeline method), 65
start() (Source method), 66
start() (StreamServerSource method), 134
start_timer() (Analyzer method), 101
StdDictToJsonParser (class in bspump.common), 84
StdJsonToDictParser (class in bspump.common), 84
stop() (Pipeline method), 65
stop() (Source method), 66
stop() (StreamServerSource method), 134
stopped() (Source method), 67
Stream (class in bspump.ipc.stream), 133
StreamClientSink (class in

bspump.ipc.stream_client_sink), 135
StreamServerSource (class in

bspump.ipc.stream_server_source), 134
StringAggregationStrategy (class in

bspump.common), 77
StringToBytesParser (class in bspump.common), 79

T
TeeProcessor (class in bspump.common), 96
TeeSource (class in bspump.common), 95
throttle() (Pipeline method), 63
time() (Connection method), 72
time() (Lookup method), 103
time() (Pipeline method), 61
time() (Processor method), 70
time() (TriggerSource method), 68
TimeZoneNormalizer (class in bspump.common), 97
TLSStream (class in bspump.ipc.stream), 134
TriggerSource (class in bspump), 68

U
unbind() (TeeProcessor method), 97
unlink() (Pipeline method), 63
unlocate() (RouterMixIn method), 94
upload() (ElasticSearchBulk method), 119

W
writer() (FileCSVSink method), 128

Index 145

	Introduction
	How to install BitSwan
	How it works
	Pipeline
	Source
	Trigger Source

	Processor

	Bitswan Tutorials
	Bitswan Tutorials
	Prerequisites
	Installing python
	Installing BSPump module
	BSPump Highlevel architecture
	BSpump Service
	Connection
	Pipeline
	Lookup
	Source
	Streaming Source
	Elastic Search Source
	Kafka Source
	Trigger Source
	TCP source
	HTTP Client Source
	MySQL
	JSON File
	CSV File

	Processor
	Sink
	PPrintSink

	Coindesk API Example
	About
	Source and Sink
	Your First Processor
	Creating Custom Processor
	Next steps

	Weather API Example
	About
	Pipeline
	Multiple locations source
	Connect to ES

	Configuration Quickstart
	What is configuration?
	Example
	Running your pump with configuration files
	In terminal
	In your IDE

	How to connect to Elastic Search
	Elastic Search Source
	Prerequisites
	Configuration File
	Code example

	Elastic Search Sink
	Prerequisites
	Configuration File
	Code example

	Escape From Tarkov Craft Profit Counter
	About
	Source
	Filter Processor
	Dataframe to csv Processor
	What next

	Fortnite Current Store Example
	About
	First sample pipeline
	Export to CSV
	Processor with pandas script
	Conclusion
	What next?

	Install ElasticSearch and Kibana via Docker
	About
	Docker compose with ES and Kibana
	Run Weather pump to pump data to Elastic Search index
	Summarize
	What next

	Install Kafka and KafDrop via Docker
	About
	Docker compose with Kafka and KafDrop
	Pump data to Kafka topic
	Summarize
	What next

	Docker File Quickstart
	About
	quickstart to docker
	docker file
	Creating docker image
	additional commands
	what next

	WebSocket Example
	what is socket
	explain server/client consumer/producer
	Server consumer
	Client producer
	what next

	Blank App
	pipeline
	processor
	service
	module
	app
	init
	how to start the pipeline

	Reference Documentation
	Basics
	Pipeline
	Pipeline construction
	Other Pipeline Methods
	Other pipeline methods

	Source

	Source Construction
	Processor
	Sink
	Connection
	Connection construction

	Top Level Objects
	BSPumpApplication
	BSPumpApplication Construction

	BSPumpService
	BSPumpService Methods

	Common
	Aggregator
	Aggregation Strategy
	Aggregation Strategy Methods

	List Aggregation Strategy
	List Aggregation Strategy Methods

	String Aggregation Strategy
	String Aggregation Strategy Methods

	Aggregator
	Aggregator

	Bytes
	String to Bytes Parser
	String To Bytes Parser Method

	Bytes To String Parser
	Bytes To String Parser Method

	Flatten
	Flatten Dict Processor
	Flatten Dict Processor

	Hexlify
	Hexlify Processor
	Hexlify Processor Method

	Iterator
	Hexlify Processor
	Hexlify Processor Method

	Hexlify Processor
	Iterator Generator Method

	Json
	CySimd Json Parser
	CySimd Json Parser Method

	Std Dict To Json Parser
	Std Dict To Json Parser Method

	Std Json To Dict Parser
	Std Json To Dict Parser Method

	Dict To JsonBytes Parser
	Dict To Json Bytes Parser Method

	Mapping
	Mapping Keys Processor
	Mapping Keys Processor Method

	Mapping Values Processor
	Mapping Values Processor Method

	Mapping Items Processor
	Mapping Items Processor Method

	Mapping Keys Generator
	Mapping Keys Generator Method

	Null
	Null Sink
	Null Sink Method

	Print
	Print Sink
	Print Sink Method

	PPrint Sink
	PPrint Sink Method

	Print Processor
	Print Processor Method

	PPrint Processor
	PPrint Processor Method

	Print Context Processor
	Print Context Processor Method

	PPrint Context Processor
	PPrint Context Processor Method

	Routing
	Direct Source
	Direct Source

	Internal Source
	Internal Source methods

	Router Mix In
	Router Mix In methods

	Router Sink
	Router Processor

	Tee
	Tee Source Processor
	Tee Source Method

	Tee Processor
	Tee Processor Method

	Time
	Time Zone Normalizer
	Time Zone Normalizer Method

	Transfr
	Mapping Transformator
	Mapping Transformator Methods

	Advanced
	Generator
	Generator Construction

	Analyzer
	Analyzer Construction
	Analyzing Source

	Lookup
	Lookup Construction
	MappingLookup
	Async Lookup Mixin
	Dictionary Lookup
	Dictionary Lookup Methods
	Lookup Provider
	Lookup Provider Methods
	Lookup BatchProvider ABC

	Anomaly

	Technologies
	Apache Kafka
	Connection
	connection Methods

	Source
	Source Methods

	Sink
	Sink Methods

	Key Filter Kafka
	Batch Sink
	Batch Sink Methods

	Topic Initializer
	topic initializer methods

	Elastic Search
	Source
	Source Methods
	ElasticSearch Aggs Source
	ElasticSearch Aggs Source Methods

	ElasticSearch Connection
	ElasticSearch Connection Methods
	Elastic Search Bulk
	Elastic Search Bulk Methods

	Lookup
	Lookup methods

	Sink
	Sink methods
	Data Feeder Methods

	Files
	File ABC Source
	File ABC Source Methods

	File Block Source
	File Block Sink
	File csv Source
	File csv Sink
	File json Source
	File line Source
	File Multiline Source

	Lookup Provider

	InfluxDB
	Connection
	Sink

	IPC and Socket
	Datagram
	Datagram sink

	Protocol
	Line Source Protocol

	Stream
	TLS Stream

	Steam Server Source
	Stream Client Sink

	FTP
	connection
	source

	RabbitMQ / AMQP
	Source
	AMQP Full Message Source

	Sink
	Connection

	Python Module Index
	Index

